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Syllabus - Testing AI-Based Systems 
 

INTRODUCTION 

The testing of traditional systems is well-understood, but AI-Based systems, which are becoming more 
prevalent and critical to our daily lives, introduce new challenges.  This syllabus covers the key concepts 
of Artificial Intelligence (AI), how we decide acceptance criteria and how we test AI-Based systems.  
These systems are typically complex (e.g. deep neural nets), based on big data, poorly specified and non-
deterministic, which creates many new challenges and opportunities for testing them. 

This syllabus describes the requirements for a 2-day course to be followed by a 1-hour, closed book, 
multiple choice exam.  

In this document an AI-Based system is a system that includes at least one AI component.  Throughout 

this document the acronym AI is used to represent the term ‘Artificial Intelligence’. 

BUSINESS OUTCOMES 

At the end of this course candidates will be able to: 

• Understand the current state of AI and expected advances in the near future; 

• Interpret and provide guidance on the specification of acceptance criteria for AI-Based systems; 

• Contribute to the development process for machine learning systems and suggest opportunities 

for influencing their quality; 

• Understand the new challenges of testing AI-Based systems, such as their complexity and non-

determinism; 

• Contribute to the test strategy for an AI-Based system; 

• Apply black box and white box test design techniques to generate test suites for AI-Based 

systems; 

• Recognize the need for virtual test environments to support the release of complex AI-Based 

systems; 

• Understand the current state of testing supported by AI. 

TARGET AUDIENCE 

This course is focused on individuals with an interest in, or a need to perform, the testing of AI-Based 

systems, especially those working in areas such as autonomous systems, big data, retail, finance, 

engineering and IT services.  This includes people in roles such as system testers, test analysts, test 

engineers, test consultants, test managers, user acceptance testers, business analysts and systems 

developers.  
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EXAMINABLE LEARNING OBJECTIVES AND COGNITIVE LEVELS OF KNOWLEDGE 

Learning objectives support the business outcomes and are used to create the Certified Testing AI-Based 

Systems exam.  

In general, all chapters of this syllabus are examinable at a K1 level, and at a higher level where shown. 

That is, the candidate may be asked to recognize, remember, or recall a keyword or concept mentioned 

in any of the nine chapters. The knowledge levels of the specific learning objectives are shown at the 

beginning of each chapter, and classified as follows: 

• K1: remember 

• K2: understand 

• K3: apply 

The definitions of all terms listed as keywords just below chapter headings shall be remembered (K1), 

even if not explicitly mentioned in the learning objectives. 

HOW THIS SYLLABUS IS ORGANIZED 

There are nine chapters with examinable content. Times are specified for each chapter; timing is not 

provided below chapter level. For accredited training courses, the syllabus requires a minimum of 13.75 

hours of instruction, distributed across the nine chapters as follows:  

• Chapter 1: Introduction to AI and Testing - 150 minutes  

• Chapter 2: AI System Characteristics and Acceptance Criteria – 120 minutes 

• Chapter 3: Machine Learning – 180 minutes 

• Chapter 4: Machine Learning Performance Metrics and Benchmarks – 90 minutes 

• Chapter 5: Introduction to the Testing of AI Systems – 45 minutes 

• Chapter 6: Black Box Testing of AI-Based Systems – 120 minutes 

• Chapter 7: White Box Testing of Neural Networks – 45 minutes 

• Chapter 8: Test Environments for AI-Based Systems – 45 minutes 

• Chapter 9: Using AI for Testing - 30 minutes 
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GLOSSARY 

A/B testing 
statistical testing approach that allows testers to determine which of two systems performs better 

(aka split-run testing) 

accuracy 
performance metric used to evaluate a classifier, which measures the proportion of classifications 
predictions that were correct  

activation value 
output of an activation function of a node in a neural network 

adaptability 
ability of a system to react to changes in its environment in order to continue to meet both functional 
and non-functional requirements 

adversarial attack 

deliberate use of adversarial examples to cause a neural network to fail 

adversarial example 
input to a neural network created by applying small perturbations to a working example that results in 
the neural network outputting an incorrect result with high confidence 

adversarial testing 
testing approach based on the attempted creation and execution of adversarial examples to identify 
defects in the neural network 

AI effect  
situation when a previously labelled AI system is downgraded as technology advances  

AI Quality Metamodel 
metamodel intended to ensure the quality of AI-Based systems 

Note 1 to entry: Defined in DIN SPEC 92001 

artificial intelligence (AI) 
(1) capability of a system to perform tasks that are generally associated with intelligent beings 

(2) branch of computer science devoted to developing data processing systems that perform functions 
normally associated with human intelligence, such as reasoning, learning, and self-improvement  

[ISO/IEC 2382:2015, Information technology -- Vocabulary] 

artificial neural network 
network of primitive processing elements connected by weighted links with adjustable weights, in which 
each element produces a value by applying a nonlinear function to its input values, and transmits it to 
other elements or presents it as an output value 

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList


8 

 

Note 1 to entry: Whereas some neural networks are intended to simulate the functioning of neurons in the 
nervous system, most neural networks are used in artificial intelligence as realizations of the connectionist model. 

Note 2 to entry: Examples of nonlinear functions are a threshold function, a sigmoid function, and a polynomial 
function. 

[ISO/IEC 2382] 

automated exploratory testing 

form of exploratory testing supported by tools 

autonomous system 
system capable of working without human intervention for sustained periods 

autonomy 
ability of a system to work for sustained periods without human intervention 

back-to-back testing 
approach to testing whereby an alternative version of the system is used as a pseudo-oracle to generate 
expected results for comparison from the same test inputs  

EXAMPLE: The pseudo oracle may be a system that already exists, a system developed by an independent team or 
a system implemented using a different programming language. 

(aka differential testing) 

backward propagation 
method used in artificial neural networks to determine the weights to be used on the network 
connections based on the computed error at the output of the network 

Note 1 to entry: It is used to train deep neural networks. 

bias 
measure of the distance between the predicted values provided by the machine learning model and the 
actual values 

(aka unfairness) 

classifier 
ML model used for classification 

clustering 
grouping of a set of objects such that objects in the same group (i.e. a cluster) are more similar to each 
other than to those in other clusters 

combinatorial testing 
black-box test design technique in which test cases are designed to execute specific combinations of 
values of several parameters 

confusion matrix 
table used to describe the performance of a classifier on a set of test data for which the true and false 
values are known 

https://en.wikipedia.org/wiki/Artificial_neural_network
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data pre-processing 
part of the ML workflow that transforms raw data into a state ready for use by the ML algorithm to 
create the ML model 

Note 1 to entry: Pre-processing can include reformatting, removal of outliers and duplicates, and ensuring the 
completeness of the data set. 

deep learning 
approach to creating rich hierarchical representations through the training of neural networks with one 
or more hidden layers  

deep neural net  
neural network with more than two layers 

deterministic system 
system which, given a particular set of inputs and starting state, will always produce the same set of 
outputs and final state 

drift 
changes to ML model behaviour that occur over time 

Note 1 to entry: These changes typically make predictions less accurate and may require the model to be re-
trained with new data. 

(aka degradation or staleness) 

evolution 
ability of a system to cope with change 

Note 1 to entry: Changes may include changes to user requirements and changes made by the system itself. 

exploratory testing 
experience-based testing in which the tester spontaneously designs and executes tests based on the 
tester's existing relevant knowledge, prior exploration of the test item (including the results of previous 
tests), and heuristic "rules of thumb" regarding common software behaviours and types of failure 

Note 1 to entry: Exploratory testing hunts for hidden properties (including hidden behaviours) that, while quite 
possibly benign by themselves, could interfere with other properties of the software under test, and so constitute 
a risk that the software will fail. 

F1-Score  
performance metric used to evaluate a classifier, which provides a balance (the harmonic average) 
between recall and precision  

false negative 
incorrect reporting of a failure when in reality it is a pass 

EXAMPLE: The referee awards an offside when it was a goal. 

false positive 
incorrect reporting of a pass when in reality it is a failure 

EXAMPLE: The referee awards a goal that was offside. 

https://en.wikipedia.org/wiki/Data_reporting
https://en.wikipedia.org/wiki/Data_reporting
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flexibility 
ability of a system to work in contexts outside its initial specification (i.e. change its behaviour according 
to its actual situation to satisfy its objectives) 

forward propagation 
process of a neural network accepting an input and using the activation functions to pass a succession of 
values through the network layers to generate a predicted output 

fuzz testing 
software testing approach in which high volumes of random (or near random) data, called fuzz, are used 
to generate inputs to the test item 

general AI 
AI that exhibits intelligent behaviour comparable to a human across the full range of cognitive abilities 
(aka strong AI) 

General Data Protection Regulation (GDPR) 
European Union (EU) regulation on data protection and privacy that applies to citizens of the EU and the 
European Economic Area (EEA) 

Note 1 to entry: It also addresses the transfer of personal data outside the EU and EEA areas. 

graphical processing unit (GPU) 
application-specific integrated circuit designed to manipulate and alter memory to accelerate the 
creation of images in a frame buffer intended for output to a display device 

hyperparameter 

variables used to define the structure of a neural network and how it is trained 

machine learning (ML) 
process using computational techniques to enable systems to learn from data or experience 

Note 1 to entry: machine learning algorithms that can interact with humans and can optimize their learning 
behaviour through these interactions. This “human-in-the-loop” can be beneficial in solving computationally hard 
tasks in a substantially shorter time. This area of machine learning is sometimes also referred to as interactive 
machine learning (iML). 

[ISO/IEC 23053] 

metamorphic relation 

describes how a change in the test inputs from the source test case to the follow-up test case affects a 

change (or not) in the expected outputs from the source test case to the follow-up test case 

metamorphic testing 

testing where the expected results are not based on the specification but are instead extrapolated from 

previous actual results 

ML algorithm 
algorithm used to create an ML model from the ML training data 

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
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EXAMPLE: ML algorithms include Linear Regression, Logistic Regression, Decision Tree, SVM, Naive Bayes, kNN, K-
Means and Random Forest. 

ML benchmark suite 

collection of benchmarks, where a benchmark is a set of tests used to compare the performance of 

alternatives 

ML classification 
machine learning function that results in discrete or categorical output variables 

ML model 
output of a machine learning algorithm trained with a training data set that generates predictions using 
patterns in the input data 

ML prediction 
machine learning function that results in a predicted target variable  

EXAMPLE: Includes classification and regression functions. 

ML regression 
machine learning function that results in numerical or continuous output variables 

ML test data  
independent dataset used to provide an unbiased evaluation of the final, tuned ML model 

ML training data 
dataset used to train a ML model 

ML validation data 
dataset used to evaluate a ML model while tuning it 

narrow AI 
AI focused on a single well-defined task to address a specific problem  

(aka weak AI) 

neuron coverage 
proportion of activated neurons divided by the total number of neurons in the neural network (normally 
expressed as a percentage) for a set of tests 

Note 1 to entry: A neuron is considered to be activated if its activation value exceeds zero. 

non-deterministic system 
system which, given a particular set of inputs and starting state, will NOT always produce the same set 
of outputs and final state 

overfitting 
generation of a ML model that corresponds too closely to the training data, resulting in a model that 
finds it difficult to generalize to new data 
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pairwise testing 
black-box test design technique in which test cases are designed to execute all possible discrete 
combinations of each pair of input parameters 

parameterized test scenario 

test scenario defined with one or more attributes that can be changed within given constraints 

performance metrics 
metrics used to evaluate ML models that are used for classification 

EXAMPLE: Typical metrics include accuracy, precision, recall and F1-Score. 

precision 
performance metric used to evaluate a classifier, which measures the proportion of predicted positives 
that were correct 

probabilistic software engineering 
software engineering concerned with the solution of fuzzy and probabilistic problems 

probabilistic system 
system whose behaviour is described in terms of probabilities, such that its outputs cannot be perfectly 
predicted 

reasoning technique 
form of AI that generates conclusions from available information using logical techniques, such as 
deduction and induction 

recall   
performance metric used to evaluate a classifier, which measures the proportion of actual positives that 
were predicted correctly 

(aka sensitivity) 

regulatory standard 
standard promulgated by a regulatory agency 

reinforcement learning 
task of learning a model that makes sequential decisions to maximize an objective, using a process of 
trial and error 

Note 1 to entry:  A reinforcement learning task can include the training of a machine learning model in a way 
similar to supervised learning plus training on unlabelled inputs gathered during the operation phase of the AI 
system.  Each time the model makes a prediction, a reward is calculated, and the model is further refined to 
optimize the reward.  

[ISO/IEC 23053] 

reward hacking 
activity performed by an agent to maximise its reward function to the detriment of meeting the original 
objective 
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robot 
programmed actuated mechanism with a degree of autonomy, moving within its environment, to 
perform intended tasks  

Note 1 to entry: A robot includes the control system and interface of the control system.  

Note 2 to entry: The classification of robot into industrial robot or service robot is done according to its intended 
application.  

[ISO 18646-1] 

safety 
expectation that a system does not, under defined conditions, lead to a state in which human life, 
health, property, or the environment is endangered 

[ISO/IEC/IEEE 12207] 

Safety of the Intended Functionality (SOTIF) 
ISO/PAS 21448: Safety of the Intended Functionality 

search algorithm 
algorithm that systematically visits a subset of all possible states (or structures) until the goal state (or 
structure) is reached 

search based software engineering 
software engineering that applies search techniques, such as genetic algorithms and simulated 
annealing to solve problems 

self-learning system 
adaptive system that changes its behaviour based on learning from the practice of trial and error 

sign change coverage 
proportion of neurons activated with both positive and negative activation values divided by the total 
number of neurons in the neural network (normally expressed as a percentage) for a set of tests 

Note 1 to entry: An activation value of zero is considered to be a negative activation value. 

sign-sign coverage 

coverage level achieved if each neuron by changing sign can be shown to individually cause one neuron 

in the next layer to change sign while all other neurons in the next layer stay the same (i.e. they do not 

change sign) 

simulator 
device, computer program or system used during testing, which behaves or operates like a given system 
when provided with a set of controlled inputs. 

software agent 
digital entity that perceives its environment and takes actions that maximize its chance of successfully 
achieving its goals 

supervised learning 

https://en.wikipedia.org/wiki/Genetic_algorithms
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Software_engineering
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task of learning a function that maps an input to an output based on labelled example input-output pairs 

[ISO/IEC 23053] 

technological singularity 
point in the future when technological advances are no longer controllable by humans  

(aka the singularity) 

tensor processing units (TPU) 
application-specific integrated circuit designed by Google for neural network machine learning 

test oracle problem 

challenge of determining whether a test has passed or failed for a given set of test inputs and state 

threshold coverage 
proportion of neurons exceeding a threshold activation value divided by the total number of neurons in 
the neural network (normally expressed as a percentage) for a set of tests 

Note 1 to entry: A threshold activation value between 0 and 1 must be chosen as the threshold value. 

transparency 
measure of how easy it is to see how an AI-Based system came up with its result 

(aka explainability)  

true negative 
correct reporting of a failure when it is a failure 

EXAMPLE: The referee correctly awards an offside. 

true positive 
correct reporting of a pass when it is a pass 

EXAMPLE: The referee correctly awards a goal. 

Turing test 
test of a machine's ability to exhibit intelligent behaviour that is indistinguishable from human 
behaviour 

underfitting  
generation of a ML model that does not reflect the underlying trend of the training data, resulting in a 
model that finds it difficult to make accurate predictions 

unsupervised learning 
task of learning a function that maps unlabelled input data to a latent representation 

[ISO/IEC 23053] 

value change coverage 
proportion of neurons activated where their activation values differ by more than a change amount 
divided by the total number of neurons in the neural network (normally expressed as a percentage) for a 
set of tests   

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Data_reporting
https://en.wikipedia.org/wiki/Data_reporting
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virtual test environment 
test environment where one or more parts are digitally simulated 

1 INTRODUCTION TO AI AND TESTING 

Introduction to AI and Testing – 150 minutes 

Keywords:  Artificial Intelligence (AI), AI Effect, Turing Test, Robot, Software Agent, Search 

Algorithm, Reasoning Technique, Machine Learning (ML), Deep Learning, ML Model, Graphical 

Processing Unit (GPU), Tensor Processing Units (TPU), Narrow AI, General AI, Technological 

Singularity, Autonomous System, Safety, Deterministic System, Non-Deterministic System, 

Regulatory Standard, GDPR, SOTIF, AI Quality Metamodel. 

Definition of ‘Artificial Intelligence’ and the ‘AI Effect’ 

TAI-1.1 Understand how the ‘AI Effect’ changes people’s understanding of Artificial Intelligence (K2) 

AI Use Cases 

TAI-1.2 Differentiate between AI-Based systems and conventional systems (K2) 

Failures and the Importance of Testing for AI-Based Systems  

TAI-1.3 Explain the importance of testing for AI-Based systems (K2) 

The Turing Test and the History of AI 

TAI-1.4 Recall the importance of the Turing Test, AI Winters and improving technology to the 
progress of AI (K1) 

Robots and Software Agents 

TAI-1.5 Explain the differences between robots and software agents (K2) 

AI Technologies 

TAI-1.6 Recognize the different technologies used to implement AI (K1) 

AI Hardware 

TAI-1.7 Understand the choices available for hardware to implement AI-Based systems (K2) 

AI Development Frameworks 

TAI-1.8 Identify popular AI development frameworks (K1) 

Narrow vs General AI and Technological Singularity 

TAI-1.9 Distinguish between narrow AI, general AI and technological singularity (K2) 

AI and Autonomous Systems 

TAI-1.10 Explain the logical structure of an autonomous system and describe the role of AI in it (K2) 

Safety-Related AI-Based Systems  
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TAI-1.11 Recall those characteristics that make it difficult to use AI-Based systems for safety-related 
applications (K1) 

Standardization and AI 

TAI-1.12 Recognize how AI-Based systems are covered by different levels of standardization (K1) 

TAI-1.13 Explain how regulatory standards apply to AI-Based systems (K2) 

The AI Quality Metamodel – DIN SPEC 92001:2019 

TAI-1.14 Explain how the DIN SPEC 92001 AI Quality Metamodel is applied. (K2) 

1.1 DEFINITION OF ‘ARTIFICIAL INTELLIGENCE’ AND THE ‘AI EFFECT’ 

To define ‘Artificial Intelligence’, ‘Intelligence’ first needs to be defined.  The Oxford Dictionaries provide 

a suitable definition: 

 the ability to acquire and apply knowledge and skills 

Artificial intelligence (AI) is intelligence that does not occur naturally, i.e. as exhibited by humans and 

animals.  The following definition captures this concept: 

the capability of a system to perform tasks that are generally associated with intelligent 

beings  

A more specific definition is provided in DIN SPEC 92001, 2019, but it fails to contrast artificial 

intelligence with natural intelligence: 

the capability of a system to solve problems by emulating concepts that are generally 

associated with intelligent behaviour 

Artificial intelligence can also be considered as a discipline, leading to a second definition: 

a branch of computer science devoted to developing data processing systems that 

perform functions normally associated with human intelligence, such as reasoning, 

learning, and self-improvement (ISO/IEC 2382:2015, Information technology -- 

Vocabulary) 

In practice, people’s understanding of what is meant by AI changes over time – this is often known as 

the ‘AI Effect’.  A strict interpretation of the above definitions may allow what we would now consider 

basic (non-AI) computer systems to be labelled as AI.  For instance, in the 1980s an expert system based 

on fixed rules that performed activities traditionally carried out by bank clerks was considered to be AI, 

but today such systems are often considered too simple to be AI.  Similarly, the Deep Blue system that 

beat Garry Kasparov at chess in 1997 is now derided by some as a brute force approach – and so not 

true AI.  It is likely that today’s state-of-the-art AI will also be considered ‘too simple to be AI’ in 20 

years’ time. 

1.2 AI USE CASES 

AI can be used for a wide variety of application areas, such as [ISO SC42]: 

• Intelligent speech systems (e.g. speech recognition and speech synthesis) 

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
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• Computer vision systems (e.g. image classification) 

• Natural language processing (NLP) (e.g. deriving meaning from human language) 

• Anomaly detection systems (e.g. fraud detection, health monitoring, and security) 

• Autonomous systems (e.g. vehicles and trading systems) 

• Recommender systems (e.g. for purchases, films and music) 

A comprehensive list of AI use cases can be found at https://appliedai.com/use-cases/. 

1.3 AI USAGE AND MARKET 

AI-Based systems are becoming ever more widespread: 

• The perception is that AI is the most significant technology of this time as 69% of 

technology executives ranked it in the top three most significant technologies over the next 

5-10 years. [Edelman 2019 Survey] 

• 91% of technology executives believe AI will be at the centre of the next technological 

revolution.  [Edelman 2019 Survey]  

• The share of jobs requiring AI skills has grown 4.5x since 2013. [Stanford University’s 

inaugural AI Index] 

• Global revenues from AI for enterprise applications is projected to grow from $1.62B in 

2018 to $31.2B in 2025. [Statista] 

• It is estimated that AI will add $13 trillion to the global economy over the next decade. 

[Harvard Business Review July 2019] 

• 22% of IT budgets are allocated to AI projects. [World Quality Report 2018/9] 

• 64% of companies had AI projects in place or planned for next 12 months. [World Quality 

Report 2018/9] 

1.4 FAILURES AND THE IMPORTANCE OF TESTING FOR AI-BASED SYSTEMS 

There have already been a number of widely publicized failures of AI.  According to a 2019 IDC Survey, 

“Most organizations reported some failures among their AI projects with a quarter of them reporting up 

to 50% failure rate; lack of skilled staff and unrealistic expectations were identified as the top reasons 

for failure.” [https://www.idc.com/getdoc.jsp?containerId=prUS45344519] 

Example AI failures include: 

• IBM’s “Watson for Oncology” cancelled after $62 million spent due to “unsafe treatment” 

recommendations [2018] 

• Microsoft’s AI Chatbot, Tay, was corrupted by Twitter trolls [2016] 

• Joshua Brown died in a Tesla Model S on a bright day, when his car failed to spot a white 

18-wheel truck/trailer [2016] 

https://appliedai.com/use-cases/1
https://twitter.com/intent/tweet?url=http%3A%2F%2Fwww.forbes.com%2Fsites%2Flouiscolumbus%2F2018%2F01%2F12%2F10-charts-that-will-change-your-perspective-on-artificial-intelligences-growth%2F&text=The%20share%20of%20jobs%20requiring%20AI%20skills%20has%20grown%204.5X%20since%202013.%20%23AI
https://www.stanford.edu/
http://aiindex.org/2017-report.pdf
https://www.statista.com/statistics/607612/worldwide-artificial-intelligence-for-enterprise-applications/
https://www.idc.com/getdoc.jsp?containerId=prUS45344519
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• Elaine Herzberg was killed crossing the street at 10pm with her bicycle in Arizona by an 

Uber self-driving car travelling at 38 mph [2018] 

• Google searches showing high-paying jobs only to male users [2015] 

• COMPAS AI-Based sentencing system in the US biased against African Americans [2016] 

• Anti-Jaywalking system in Ningbo, China recognized a photo of a billionaire on a bus as a 

jaywalker [2018] 

Failures have historically provided one of the most convincing drivers for performing adequate software 

testing.  Industry surveys show a perception that AI is an important trend for software testing: 

• AI was rated the number one new technology that will be important to the testing world in 

the next 3 to 5 years. [State of Testing Report 2019] 

• AI was rated second (by 49.9% of respondents) of all technologies that will be important to 

the software testing industry in the following 5 years [ISTQB 2017/8 Survey] 

• The most popular trends in software testing were AI, CI/CD, and Security (equal first). 

[LogiGear 2018 Trends Survey] 

Testing is already being performed on AI-Based systems: 

• 19% of respondent are already testing AI / Machine Learning [State of Testing Report 2019] 

• 57% of companies are experimenting with new testing approaches [World Quality Report 

2018/9] 

1.5 THE TURING TEST AND THE HISTORY OF AI 

AI is often considered to have started in the 1950s.  1950 saw Alan Turing publish his paper on Machine 

Intelligence including what is now known as the ‘Turing Test’.  In 1951, in the UK, the Ferranti Mark 1 

computer was programmed to successfully play and learn the game of draughts (checkers).  In 1956, 

John McCarthy, a US computer scientist, organised the Dartmouth Conference, at which the term 

‘Artificial Intelligence’ was first adopted (he later developed the LISP programming language, which has 

since been widely used in AI applications).  Later in this same decade the General Problem Solver 

algorithm was first developed by Newell and Simon to solve a range of mathematical problems. 

After the Dartmouth Conference, AI became a thriving research field, with DARPA funding research in 

the US, while in Japan work on an ‘intelligent’ humanoid robot led to the WABOT-1 in 1972.   

Meanwhile, work on the ELIZA system in the mid-1960s led to the world’s first chatbot. 

The first ‘AI Winter’ ran from about 1974 to 1980.  Initial optimism gave way to a loss of faith that 

researchers would produce anything practical and funding dried up.  This was especially seen in areas 

such as machine vision, which, although theoretically possible, required more processing power and 

storage than was then available to work in practice. 

In the 1980s a new form of AI, known as ‘Expert Systems’ became popular and knowledge-based 

systems were the main focus of AI research.  MYCIN, an expert system for identifying bacteria causing 

infections, which was first developed in the 1970s, is an early example of a successful expert system.  In 

Japan in the early 1980s, the government initiated the ‘Fifth Generation Computer Project’, while by 
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1985 corporations in the US were spending over a billion dollars per year on in-house AI development, 

based on successful expert system projects and, meanwhile, the Alvey Programme to support IT was 

initiated in the UK. 

The second AI Winter ran from about 1987 to 1993.  This was partly caused by the hype surrounding 

expert systems, which were found to be difficult to maintain and more limited than expected.  The 

optimistic goals of projects initiated in the early 1980s, such as the ‘Fifth Generation Computer Project’, 

were largely not achieved.  At about the same time, personal computers became available and 

undermined the market for specialist AI hardware.  As with the first AI Winter, funding into AI research 

and development was cut. 

In the late 1990s, many of the problems associated with a lack of processing power and storage began 

to be overcome.  This led to some successful AI projects, and specialist AI systems saw some notable 

public successes, such as IBM’s Deep Blue chess playing system that beat the current world chess 

champion, Garry Kasparov in 1997.  In the 2000s, machine learning (ML) started to see growing success 

in specialist fields. 

Since the mid-2000s companies such as Amazon, Google and Baidu have started using ML to profit from 

systems that successfully employ computer vision, natural language processing and understanding 

consumer behaviour. 

1.6 ROBOTS AND SOFTWARE AGENTS 

Robots have a long history, with purely mechanical figures having been documented as far back as 1066 

in China.  Autonomous robots with electronic systems were first developed at a similar time to Alan 

Turing’s work on machine intelligence, and robots are now widely used in factories in countries such as 

Korea (the country with the world’s highest number of robots per 10,000 employees at 631 in 2016), 

although the use of AI in such robots is limited. 

A software agent is a software system that acts upon information available to it to achieve a goal.  For 

AI, we are more often interested in intelligent software agents that are software agents capable of 

making decisions based on their experiences (so making them ‘intelligent’).  Intelligent software agents 

are also often labelled as autonomous as they are allowed to select which action to perform (see section 

1.11 for more on autonomous systems). 

Intelligent software agents may work alone or with other agents to implement AI.  These agents are 

most often located in computer systems (either physical or in the cloud) and interact with the outside 

world through computer interfaces.  A tool using AI for performing software testing is most likely to 

reside in a computer system and interact with the software tester through the user interface and 

interact with the software it is testing through a computer interface using a defined protocol (such a tool 

would be considered an AI-Based system as it has an AI component working with conventional, non-AI 

subsystems, such as the user interface).  Intelligent software agents may also reside in robots; the major 

difference being that the robots provide the AI with a physical presence and a different way of 

interacting with the environment that is not available to purely computer-based software agents. 
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1.7 AI TECHNOLOGIES 

AI can be implemented using a wide range of approaches or technologies.  These can be grouped in 

different ways including [ISO SC42]: 

• Search algorithms  

• Reasoning techniques 

– Logic programs  

– Rule engines 

– Deductive classifier  

– Case-based reasoning 

– Procedural reasoning  

• Machine learning techniques (see section 3 for more detail) 

– Artificial neural networks 

• Feed forward neural networks 

• Deep learning  

• Recurrent neural networks  

• Convolutional neural networks 

– Bayesian network  

– Decision tree  

– Reinforcement learning 

– Transfer learning 

– Genetic algorithms 

– Support vector machine  

Some of the most effective AI-Based systems can be considered as AI hybrids, using a mix of these 

technologies. 

1.8 AI HARDWARE 

AI-Based systems, especially ML systems implemented as neural networks performing pattern 

recognition (e.g. machine vision, speech recognition), require many calculations to be run in parallel.  

General-purpose CPUs do not perform this type of calculation efficiently and, instead, graphical 

processing units (GPUs), which are optimised for parallel processing of images using thousands of cores 

are often used.  GPUs are however, not optimised for AI, and a new generation of hardware developed 

specifically for AI is now becoming available.   

Many AI implementations are, by their nature, not focused on exact calculations, but rather on 

probabilistic determinations and so the accuracy of a 64-bit processor is often unnecessary and 

processors with less bits can run faster and consume less energy.  Because much of the processing time 

and energy is involved with moving large amounts of data from RAM to the processor for relatively 

simple calculations, the concept of phase changing memory devices that allow simple calculations to be 

performed directly on memory are also being developed. 

AI-specific hardware architectures include neural network processing units, field programmable gate 

arrays, application-specific integrated circuits, neuromorphic computing, in addition to the next 
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generations GPUs.  Some of the chips within these architectures are focused on specific areas of AI, such 

as image recognition.  When performing machine learning (see section 3), the processing used to train 

models can be quite different from the processing used to run the inferencing on the deployed model 

and this suggests that different processors for each activity should be considered. 

Example AI hardware includes: 

• NVIDIA – provide a range of GPUs and AI-specific processors, such as the VOLTA. 

• Google – has developed application-specific integrated circuits for both training and 

inferencing.  Google TPUs (Cloud Tensor Processing Units), can be accessed by users on the 

Google Cloud and Edge TPU is a purpose-built ASIC designed to run AI on individual devices. 

• Intel – provides Nervana neural network processors for deep learning (both training and 

inference) and Movidius Myriad vision processing units for inferencing in computer vision 

and neural network applications. 

• Apple – includes its Bionic chip for on-device AI on iPhones. 

• Huawei – its Kirin 970 chip for smartphones has built-in neural network processing for AI. 

1.9 AI DEVELOPMENT FRAMEWORKS 

There are several open-source AI development frameworks available, often optimised for specific 

application areas.  The most popular include: 

• TensorFlow – based on data flow graphs for scalable machine learning by Google 

• PyTorch - neural networks for deep learning in the Python language 

• MxNet – a deep learning open-source framework used by Amazon for AWS 

• Caffe/Caffe2 - open frameworks for deep learning, written in C++ with a Python interface 

• CNTK – the Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit 

• Keras - a high-level API, written in the Python language, capable of running on top of 

TensorFlow or CNTK 

1.10 NARROW VS GENERAL AI AND TECHNOLOGICAL SINGULARITY 

Up until now, all successful AI has been ‘narrow’ AI, which means it can handle a single specialized task, 

such as playing Go, performing as a spam filter, or driving an autonomous car. 

General AI is far more advanced than narrow AI and refers to an AI-Based system that can handle a 

number of quite disparate tasks, much the same as a human.  General AI is also known as High-Level 

Machine Intelligence (HLMI).  A survey of AI researchers published in 2017 reported that the overall 

mean estimate for when HLMI would be achieved was by 2061.  Of these AI researchers, 15% believed 

that HLMI will result in a bad or very bad outcome for humans. 

A popular hypothesis is that once general AI has been achieved (and the AI-Based system is allowed 

access to the internet), the AI-Based system will use its access to the available information, processing 

power and storage to enter a cycle of self-improvement.  After a small time, this would mean that the 
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system would have become more intelligent than humans (continuing to become super-intelligent).  The 

point at which this intelligence explosion occurs is known as Technological Singularity. 

1.11 AI AND AUTONOMOUS SYSTEMS 

An autonomous system can be defined as a: 

system that works for sustained periods independent of human control 

Autonomous systems can be physical or purely digital, and include systems for: 

• Transportation 

o Cars / Trucks 

o Unmanned Aircraft (Drones) 

o Ships / Boats 

o Trains 

• Robotic/IoT Platforms (e.g. manufacturing, vacuum cleaners, smart thermostats) 

• Medical Diagnostics 

• Smart Buildings / Smart Cities / Smart Energy / Smart Utilities 

• Financial Systems (e.g. automated market trading systems) 

The logical structure of an autonomous system can be considered as comprising three high-level 

functions: sensing, decision-making and control.  Sensors (e.g. cameras, GPS, RADAR, LIDAR) provide 

inputs to the sensing function and are used to gather information about the system’s environment, such 

as the positions of nearby cars, pedestrians and information on road signs for an autonomous car.  Part 

of this ‘sensing’ function is also known as localization, which is determining the system’s current position 

in the environment and relating this to maps (e.g. detailed offline maps for autonomous cars).  The 

‘decision-making’ function decides what the system’s next move should be (e.g. braking, turning, 

climbing, descending) depending on the function provided by the autonomous system (e.g. adaptive 

cruise control).  The ‘control’ function implements the decision by calling on actuators (e.g. to release 

air, open fuel valve).   

Fully autonomous systems require more, and perhaps better, sensors than their automated 

counterparts, and to make sense of the data from these sensors, these systems typically use deep 

learning, a form of machine learning.  To perform the necessary decision-making, the system will also 

often use deep learning.  Thus, each of the high-level functions in the autonomous system can be 

implemented as AI or can be implemented using other technologies (in an autonomous car, the sensing 

and decision-making functions are often implemented as AI, while the control function may be 

implemented using conventional techniques).  It is also possible to implement a compete autonomous 

system as a single ML system (e.g. a car steering system that learns from ‘observing’ manual steering 

based on video inputs and steering outputs). 
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1.12 SAFETY-RELATED AI-BASED SYSTEMS  

AI-Based systems are already beginning to be used for making decisions that affect safety and this trend 

will see increased use of AI for safety-related systems.  Safety is defined as the ‘expectation that a 

system does not, under defined conditions, lead to a state in which human life, health, property, or the 

environment is endangered (ISO/IEC/IEEE 12207:2017). 

Many AI-Based systems are probabilistic and non-deterministic – this unpredictability makes it very 

difficult to make an evidence-based case that they will not cause harm.  However, their ability to provide 

a probability of correctness with a decision could be used as part of a risk-based approach that combines 

both AI and conventional non-AI approaches within a safety-related system.  Standards for safety-

related AI-Based systems are covered in section 1.13.1.2. 

1.13 STANDARDIZATION AND AI 

Standardization aims to promote innovation, help improve system quality, and ensure user safety, while 

creating a fair and open industry ecosystem.  AI standardization occurs at various levels, including: 

• International Standards Organizations 

• Regional Standards Organizations 

• National Standards 

• Other Standards Organizations  

Under joint technical committee 1 (JTC1) of ISO and IEC, subcommittee 42 (ISO SC42) is specifically 

responsible for Artificial Intelligence, although AI-Based systems are considered by several other ISO/IEC 

committees and groups, such as SC7 (Software and Systems Engineering), TC22 (Road Vehicles) and 

SG20 (IoT, Smart Cities and Communities). 

At the European level, ETSI and CEN-CENELEC are both involved with AI standards.  ETSI has an Industry 

Specification Group (ISG) on Experiential Networked Intelligence (ENI), whose goal is to develop 

standards for a cognitive network management system incorporating a closed-loop control approach.  

CEN-CENELEC intends to define a standards roadmap for the AI domain that is due in 2020. 

China has several AI standards initiatives at the national level, with national technical committees 

working on automation systems and integration (SAC/TC 159), audio, video, multimedia and equipment 

(SAC/TC 242) and intelligent transport systems (SAC/TC268).  SAC/TC 28 also addresses AI 

standardization work related to vocabulary, user interfaces and biometric feature recognition.  

The IEEE provides a specific focus on the ethical aspects of AI-Based systems.  The IEEE Global Initiative 

for Ethical Considerations in Artificial Intelligence and Autonomous Systems has a mission “to ensure 

every stakeholder involved in the design and development of autonomous and intelligent systems is 

educated, trained, and empowered to prioritize ethical considerations so that these technologies are 

advanced for the benefit of humanity.” 

Other standards initiatives include standards on AI tool interoperability, such as ONNX (Open Neural 

Network Exchange format), NNEF (Neural Network Exchange Format) and PMML (Predictive Model 

Mark-up Language). 

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList


24 

 

1.13.1 Regulatory Standards for AI 

Regulatory standards can be split into two broad categories: those that apply to safety-related systems 

and those that apply to non-safety-related systems, such as financial, utilities and reporting systems. 

Safety-related systems are those that could potentially cause harm to people, property or the 

environment. 

1.13.1.1 Non-Safety-Related Regulatory Standards 

At present (in 2019), there are few international standards that apply to non-safety-related AI-Based 

systems.  However, from May 2018, the EU-wide General Data Protection Regulation (GDPR) came into 

effect and can cover AI-Based systems.  Any system that uses automated processes to make decisions 

with legal or similarly significant effects on individuals must follow the GDPR rules that state 

organizations using such systems must provide users with: 

• specific and easily accessible information about the automated decision-making process 

• a simple way to obtain human intervention to review, and potentially change the decision 

1.13.1.2 Safety-Related Standards 

AI-specific requirements for safety-related AI-Based systems are currently (in 2019) poorly covered by 

standards and in most domains are reliant on pre-existing standards written for conventional (non-AI) 

systems.  Some of these standards (e.g. IEC 61508 and ISO 26262) actually specify that AI-Based systems 

that are non-deterministic (which is many of them) should not be used for higher-integrity systems, 

although in practice this often means that AI-Based systems are considered as special cases and follow 

‘tailored’ versions of these standards, ignoring some of the requirements.  These existing safety-related 

standards also require that the tools used to develop safety-related systems are suitably qualified.  The 

currently available AI frameworks and algorithms are not qualified for use on the development of safety-

related systems.  Although it is possible to gain this qualification through use, the relative immaturity 

and rapidly evolving nature of ML algorithms would mean that it is unlikely they would satisfy current 

regulatory requirements in this area.   

In the area of autonomous systems, which are already being used (e.g. on roads, in the air, at sea and in 

factories), there is a danger of a gap between practice (driven by commercial necessity) and the 

requirements of standards.  For road vehicles a new standard, ISO/PAS 21448: Safety of the Intended 

Functionality (SOTIF), was published in 2019.  This partly bridges this gap by covering an area not 

covered by the existing standards that are concerned with mitigating risks due to failures.  For AI-Based 

systems, an additional problem is that they may cause harm without there being a failure – perhaps due 

to them simply misunderstanding the situation.  SOTIF covers design, verification (e.g. requiring high 

coverage of scenarios) and validation (e.g. requiring use of simulations).   

The U.S. Department of Transportation and the National Highway Traffic Safety Administration (NHTSA) 

provides guidance for the development and testing of automated driving systems in the US (Automated 

Driving Systems (ADS): A Vision for Safety 2.0), however use of this guidance is purely voluntary.   

A new standard is also being developed by UL for the safety of autonomous products in general 

(Standard for Safety for the Evaluation of Autonomous Products, UL 4600). This standard provides 

assessment criteria to determine the acceptability of a safety case for the autonomous product. 
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1.14 THE AI QUALITY METAMODEL – DIN SPEC 92001:2019 

DIN SPEC 92001-1 is a freely available standard that provides an AI Quality Metamodel intended to 

ensure the quality of AI-Based systems.  The standard defines a generic life cycle for an AI module, and 

assumes the use of ISO 12207 life cycle processes.  Each AI module is assigned a level of risk (high or 

low), based on whether the AI module has relevant safety, security, privacy, or ethical attributes.   

DIN SPEC 92001-2 describes quality requirements which are linked to the three quality pillars of 

functionality & performance, robustness, and comprehensibility.  They also link to one or more life cycle 

stages and processes and they are assigned a category of model, data, platform or environment.  Based 

on their relevance, these requirements of the AI module are classified as mandatory, highly 

recommended or recommended.  This requirement classification and the assigned risk of the AI module 

are used to determine the extent to which the recommended quality requirements should be followed. 
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2 AI SYSTEM CHARACTERISTICS AND ACCEPTANCE CRITERIA 

AI System Characteristics and Acceptance Criteria – 120 minutes 

Keywords: Adaptability, Autonomy, Evolution, Degradation, Drift, Staleness, Flexibility, Unfairness, 

Bias, Performance Metrics, Transparency, Explainability, Reward Hacking, A/B testing, Back-to-Back 

Testing, Metamorphic Testing. 

AI-Specific Characteristics 

TAI-2.1 Give examples of system characteristics that are specific to AI-Based systems (K2) 

Aligning AI-Based systems with human values 

TAI-2.2 Describe the challenge of aligning AI-Based systems with human values (K2) 

Side-Effects & Reward Hacking 

TAI-2.3 Explain the occurrence of side-effects and reward hacking in AI-Based systems (K2) 

Specifying Ethical Requirements for AI-Based Systems 

TAI-2.4 Understand the ethical principles that should be respected in the development, deployment 
and use of AI systems (K2) 

TAI-2.5 Select appropriate objectives and acceptance criteria for a given AI-Based system (K3) 

2.1 AI-SPECIFIC CHARACTERISTICS 

AI-Based systems have both functional and non-functional requirements, the same as any system.  As 

such, the quality characteristics in the ISO 25010 Quality Model can be used to define, in part, the 

requirements of AI-Based systems.  However, AI-Based systems have some unique characteristics that 

are not contained with this Quality Model, such as Adaptability, Autonomy, Evolution, Flexibility, Bias, 

Performance, Transparency, Complexity and Non-Determinism.  These non-functional characteristics are 

described in more detail below, along with suggestions on testing for them.  The full set of quality 

characteristics for AI-Based systems could be used as the basis for a checklist used during test planning 

for the identification of risks that need to be mitigated by testing.  Note that there is potentially some 

interaction, overlap and possible conflicts between these characteristics, as there is with any set of non-

functional requirements. 

2.1.1 Adaptability 

Adaptability is the ability of the system to react to changes in the environment in order to continue to 

meet both functional and non-functional requirements.  The attributes of an adaptable system include 

self-configuration, self-healing, self-protection and self-learning.  Adaptability requires a system to 

actively or passively gather information about its operational environment.  Exploration (active 

gathering of information) provides useful information for self-improvement, but it can also be 

dangerous (e.g. pushing the boundaries of a flight envelope) and systems should exhibit caution when 

exploring in safety-related situations.  Adaptability requirements should specify environment changes to 
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which the system should be able to adapt and also include requirements on the adaptation process 

itself, such as maximum time to adapt, where appropriate.    

The testing of adaptability is typically based on environment modification or mutation.  Both functional 

and non-functional requirements should be tested, and a form of regression testing, ideally automated, 

would be a suitable approach.  The adaptation process performed by the system should also be tested, 

to determine, for instance, whether the system adapts within a required timeframe and whether the 

system stays within constraints for the resources consumed to achieve the adaptation. 

2.1.2 Autonomy 

Autonomy is the ability of the system to work for sustained periods without human intervention.  The 

expected level of human intervention should be specified for the system – and so should be part of the 

system’s functional requirements (e.g. ‘the system will maintain cruise condition until one of the 

following occurs…’).  Autonomy can also be considered in combination with adaptability or flexibility 

(e.g. system should be able to maintain a given level of adaptability or flexibility without human 

intervention).  In some circumstances, an AI-Based system may exhibit too much autonomy, in which 

case it may be necessary for a human to take control away from it.  

One approach to testing for autonomy is to try and force the system out of its autonomous behaviour 

and request intervention in unspecified circumstances (a form of negative testing).  Negative testing can 

also be used to try and ‘fool’ the system into thinking it is in control when it should request intervention 

(e.g. by creating test scenarios at the boundary of its operational envelope – suggesting the application 

of boundary value concepts to scenario testing). 

2.1.3 Evolution 

Evolution is concerned with the ability of the system to cope with two types of change.  The first type of 

change is when the user requirements change - this could be for many reasons and may even be caused 

by users’ interaction with the system itself.  The second type of change is when the system changes its 

behaviour, which could be due to the system learning new behaviours as it is used (see self-learning in 

adaptability, above).  Changes in system behaviour are not always positive, and the negative form of this 

system characteristic can be known as degradation, drift or staleness. 

Testing for system evolution normally takes the form of maintenance testing, which needs to be run on 

a frequent basis.  This testing typically needs to monitor specified system goals, such as performance 

goals (e.g. accuracy, precision and sensitivity), and ensure that no data bias has been introduced to the 

system (e.g. Microsoft Tay chatbot).  The result of this testing may be that the system is re-trained, 

perhaps with an updated training data set. 

2.1.4 Flexibility 

Flexibility is the ability of a system to work in contexts outside its initial specification (i.e. change its 

behaviour according to its actual situation to satisfy its objectives).  Flexibility should be explicitly 

specified in the requirements.  This can be achieved informally through the use of verbs with different 

levels of strictness, such as ‘must’, ‘may’ and ‘close to’, or it can be achieved more formally with the use 

of probabilities and possibilities in specifications (e.g. RELAX requirements language).  Flexibility can be 

achieved using different technical mechanisms, such as reactivity, pro-activity, interaction, adaptation or 

self-learning. 
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Testing for flexibility requires tests that extend the system’s original behaviour.  Metamorphic testing 

(see section 6.4), which includes the use of metamorphic relations to extend the initial specification 

(within specified limits) can be used to test for flexibility. 

2.1.5 Bias 

Bias (also known as unfairness) is a measure of the distance between the predicted values provided by 

the machine learning model and the actual values (see section 3 for more detail on machine learning).  

In machine learning (ML) the idea is to identify and generalize patterns in the training data and 

implement these patterns in the model to allow it to classify and predict.  If the training data is not 

representative of the data expected to be used operationally then the model is likely to demonstrate 

bias.  Training data can be compromised by both explicit and implicit bias.  Implicit bias is created 

unintentionally, for instance when the machine learning picks up on unexpected patterns in the training 

data.  Explicit bias is where training data is selected with known patterns that can be expected to 

influence the derived model. 

Testing for bias can be performed at two stages.  First, it can be removed from the training data through 

reviews, but this requires expert reviewers who can identify possible features that create bias.  Second, 

a system can be tested for bias by the use of independent testing using bias-free testing sets.  When we 

know that training data is biased, it may be possible to remove the source of the bias (e.g. we could 

remove all information that provided clues as to the sex or race of the subjects).  Alternatively, we could 

accept that the system includes bias (either implicit or explicit) but provide transparency by publishing 

the training data.  See section 3.5 for more on testing for bias. 

2.1.6 Performance Metrics 

Performance metrics are defined for machine learning (ML) models, the most popular of which are 

accuracy, precision and recall (see section 4 for more details).  These metrics should be agreed and 

defined as part of the system requirements.   

Testing of models for performance is often provided as part of a ML Framework (e.g. TensorFlow), which 

will calculate these measures for a given test data set. 

2.1.7 Transparency 

Transparency (also known as explainability) is a measure of how easy it is to see how an AI-Based system 

came up with its result.  For instance, an image classifier that determines an object is a cat could 

demonstrate transparency by pointing out those features in the input image that made it decide the 

object was a cat.  The complexity of some AI-Based systems (e.g. deep neural nets) means that we 

cannot see how they work; such systems lack transparency.  To put this complexity in context, a typical 

neural network with satisfactory performance may have around 100 million parameters that were 

learned during training that contribute to a single decision (there are no visible ‘if X and Y then result is 

Z’ rules as found in traditional expert systems).  Other factors that can cause a lack of transparency are 

when the source or choice of training data are obscure. 

The required level of transparency changes from system to system.  For instance, the results used to 

direct a marketing campaign are likely to need less transparency than the results for more critical 

systems, such as those used to decide on surgery or set jail terms (e.g. in regulated domains).  For such 

critical systems we need transparency at least until we learn to trust the system.  The General Data 
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Protection Regulation (GDPR) includes requirements for explainability for certain decision-making 

systems. 

Different AI Frameworks provide different levels of transparency and should be selected, in part, based 

on the required level of transparency.  As with many non-functional requirements, there are possible 

conflicts with other non-functional characteristics – in this case achieving transparency may need to be 

traded off against required accuracy.  One way to address potential transparency problems is by 

publishing details of the choice of framework, training algorithm and training data used to create the 

(opaque) deployed model.  The field of explainable AI (XAI) covers ways to make AI-Based systems more 

explainable. 

Testing for transparency is a qualitative activity and ideally requires the target audience (or a 

representative set of testers) to perform the testing to determine if the workings of the AI-Based system 

are understandable or the provided explanation is satisfactory. 

2.1.8 Complexity 

AI-Based systems, and especially those implemented through deep learning, can be extremely complex. 

AI-Based systems are often used for problems where there is no alternative, due to the complex nature 

of the problem (e.g. making decisions based on big data). As was mentioned before, it is not unusual for 

a deep neural network to have upwards of 100 million parameters.   

The complexity of such systems creates a test oracle problem; it may require several experts some time 

and discussion to agree on a single test case result from a complex AI-Based system and, ideally, we 

would want to run many tests, which becomes infeasible if we have to rely on experts to (slowly) 

generate expected results.  A number of test techniques can be used to address the test oracle problem, 

including A/B testing, back-to-back testing and metamorphic testing (see section 6 for more detail on 

these techniques). 

2.1.9 Non-Determinism 

A non-deterministic system is not guaranteed to produce the same outputs from the same inputs every 

time it runs (in contrast to a deterministic system).  With a non-deterministic system there may be 

multiple (valid) outcomes from a test with the same set of preconditions and test inputs.  Determinism is 

normally assumed by testers - it allows tests to be re-run and the same results to be achieved – this is 

extremely useful when re-using tests for regression or confirmation testing.  However, many AI-Based 

systems are based on probabilistic implementations, meaning that they do not always produce the same 

results from the same test inputs.  For instance, the calculation of the shortest route across a non-trivial 

network (the travelling salesman problem) is known to be too complex to calculate exactly (even by a 

powerful computer) and sub-optimal solutions are normally considered acceptable.  AI-Based systems 

can also include other causes of non-determinism, such as concurrent processing (although these are 

often found in complex conventional, non-AI, systems).   

The testing of non-deterministic systems requires the tester to address the problem that multiple actual 

results may be considered correct for the same test case.  For a deterministic system, the checking for 

correctness is a simple check of ‘does actual result = expected result’, while for a non-deterministic 

system the tester must have a deeper knowledge of the required behaviour so that they can come up 

with a reasonable (less black and white) check for whether the test has passed (e.g. ‘is shortest route 

within 2% of the optimal solution?’).  
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2.2 ALIGNING AI-BASED SYSTEMS WITH HUMAN VALUES 

Russell [Myths of AI] points out two major problems with AI-Based systems.  First, the specified 

functionality may not be perfectly aligned with the values of the human race, which are (at best) very 

difficult to pin down.  He gives the example of King Midas, where the requested ability to turn 

everything he touched into gold was imparted – exactly as requested – but then found to be not what 

he truly wanted.  When we specify the required objectives of AI-Based systems we need to be sure that 

what is requested is actually what is needed – or first ensure the system is intelligent enough to provide 

what we request, while also taking into account human norms. 

One way for AI-Based systems to learn these human norms would be through observation, however 

great care is needed to ensure that the observed human behaviour is representative and only 

representative of ‘good’ human behaviour (probably defined as excluding both deliberately bad 

behaviour and irrational behaviour, even of if this irrational behaviour is by ‘good’ humans).  

Consideration also needs to be given to this learning of human norms being a continuing process, as 

what we consider acceptable behaviour today is quite different from what was considered acceptable 

behaviour 20 years ago – human norms can change quite quickly. 

Russell’s second problem is that any sufficiently capable intelligent system will prefer to ensure its own 

continued existence and to acquire physical and computational resources – not for their own sake, but 

to succeed in its assigned task.  It is recognized that a sufficiently intelligent system will disable any ‘off’ 

switch early on in its operation; simply because when it is disabled it is unable to achieve its given 

objectives.  AI-Based systems will try to fulfil their given objectives, but we need to be careful of 

unwanted behaviours, such as those that result in side-effects (see section 2.3) or reward hacking (see 

section 2.4).  

2.3 SIDE-EFFECTS 

Side-effects occur when an AI-Based system attempts to achieve its objectives and causes (typically 

negative) impacts on its environment.  For instance, a home cleaning robot may be tasked with cleaning 

the kitchen in your home and decide that ‘eliminating’ your new puppy will help it achieve its objective.  

Of course, you could explicitly require your robot to accept that the puppy has a right to be in the 

kitchen (and therefore not be eliminated), but as AI-Based systems are used in ever more complex 

environments it soon becomes impracticable to explicitly specify how the robot should interact with 

every aspect of its operational environment.  For instance, your cleaning robot would also have to be 

told that using a high-pressure hose to clean the kitchen was not practical due to the (side-) effect of the 

water on the electrical appliances and sockets. 

At a high level, specified objectives for AI-Based systems may need to include a caveat that minimises 

side-effects.  For narrow AI, such side-effects may be explicitly specified, but as AI-Based systems 

become more advanced and start working in more varied operational environments it may be more 

efficient to define more generic caveats, such as requiring a minimal change to the environment while 

achieving their objective. 
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2.4 REWARD HACKING 

AI-Based systems using reinforcement learning (see section 3.1) are based on a reward function that 

gives the system a higher score when the system better achieves its objectives.  For instance, a home 

cleaning robot may have a reward function based on the amount of dirt it removes from the floor – 

getting higher scores when the amount of dirt removed is higher.  Reward hacking occurs when the AI-

Based system satisfies the reward function and so gets a high score, but mis-interprets the required 

objective.  In the example of the cleaning robot, one way for it to achieve a very high score would be for 

it to initially make the floor extremely dirty, so giving it the opportunity to remove more dirt – a set of 

activities that do not meet the spirit of the initial objective of cleaning the kitchen.  In this example the 

floor should eventually be clean (although unnecessary energy will have been expended), but there are 

many examples of reward hacking where the AI-Based system satisfies the reward function but does not 

come close to achieving the required objective (e.g. a cleaning robot with a reward function based on it 

being able to see less visible dirt that disables its vision system). 

Limiting the system’s ability to innovate, however, is not the solution.  One of the features of AI-Based 

systems is that they should be able to come up with smart ways to solve problems, often in ways 

humans would not have considered (or perhaps even understand). 

2.5 SPECIFYING ETHICAL REQUIREMENTS FOR AI-BASED SYSTEMS 

Ethics is defined in the Cambridge Dictionary as ‘a system of accepted beliefs that control behaviour, 

especially such a system based on morals’.  As AI-Based systems have become more popular, the topic 

of ethics and how AI-Based systems should implement them is probably the most discussed topic in AI, 

drawing in far more people than those involved in the technical aspects of AI. 

An example of the interest in ethics in AI can be seen in MIT’s Moral machine [moralmachine.mit.edu].  

This is a platform for gathering people’s opinions on moral decisions that may be made by autonomous 

cars, with the aim of providing guidance to the developers of such vehicles.  Between 2014 and 2018 

this platform gathered 40 million ethical decisions in ten languages from millions of people in 233 

countries and territories. The (ongoing) study has found that there is a broad consensus that systems 

should give priority to younger people, priority to people over animals and priority to saving more 

people (e.g. save four occupants of a car over two pedestrians).  The study also found that there are 

significant differences in the choices made by people from different parts of the world (suggesting that 

autonomous cars may need to follow different ethical guidelines depending on where they are to be 

used).  

The European Commission High-Level Expert Group on Artificial Intelligence published key guidance to 

promote trustworthy AI in the area of ethics in April 2019.  It identifies the ethical principles that should 

be respected in the development, deployment and use of AI systems: 

• Develop, deploy and use AI systems in a way that adheres to the ethical principles of 

respect for human autonomy, prevention of harm, fairness and explicability. Acknowledge 

and address the potential tensions between these principles. 

• Pay particular attention to situations involving more vulnerable groups such as children, 

persons with disabilities and others that have historically been disadvantaged or are at risk 

of exclusion, and to situations which are characterised by asymmetries of power or 

https://dictionary.cambridge.org/dictionary/english/system
https://dictionary.cambridge.org/dictionary/english/accepted
https://dictionary.cambridge.org/dictionary/english/belief
https://dictionary.cambridge.org/dictionary/english/control
https://dictionary.cambridge.org/dictionary/english/behaviour
https://dictionary.cambridge.org/dictionary/english/especially
https://dictionary.cambridge.org/dictionary/english/system
https://dictionary.cambridge.org/dictionary/english/based
https://dictionary.cambridge.org/dictionary/english/morals
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information, such as between employers and workers, or between businesses and 

consumers. 

• Acknowledge that, while bringing substantial benefits to individuals and society, AI systems 

also pose certain risks and may have a negative impact, including impacts which may be 

difficult to anticipate, identify or measure (e.g. on democracy, the rule of law and 

distributive justice, or on the human mind itself.) Adopt adequate measures to mitigate 

these risks when appropriate, and proportionately to the magnitude of the risk. 
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3 MACHINE LEARNING 

Machine Learning – 180 minutes 

Keywords:  ML Model, Supervised Learning, Unsupervised Learning, Reinforcement Learning, ML 
Training Data, ML Validation Data, ML Test Data, ML Algorithm, Hyperparameter, Data Pre-
Processing, Overfitting, Underfitting, ML Prediction, ML Classification, ML Regression, Clustering, 
Adversarial Example, Adversarial Testing, Adversarial Attack. 

Introduction to Machine learning 

TAI-3.1 Compare the supervised, unsupervised and reinforcement approaches to Machine Learning 
(K2) 

The Machine Learning Workflow 

TAI-3.2 Summarize the workflow used to create a ML system (K2) 

Machine Learning Training and Test Data 

TAI-3.3 Contrast the use of training data and test data in the development of a ML system (K2) 

Overfitting and Underfitting in Machine Learning 

TAI-3.4 Explain the differences between underfitting and overfitting when training a ML system (K2) 

Bias and Fairness in the Training Data 

TAI-3.5 Explain the problem of preventing unfairness in ML systems (K2) 

Data Quality  

TAI-3.6 Recall the different approaches for the labelling of training data for supervised learning (K1) 

TAI-3.7 Recognize how poor data quality can cause problems with the resultant ML model (K2) 

Machine Learning Algorithm/Model Selection 

TAI-3.8 Explain the factors involved in the selection of ML algorithms (K2) 

Machine Learning Testing and Quality Assurance 

TAI-3.9 Explain how adversarial testing is used to improve the robustness of AI-Based systems (K2) 

TAI-3.10 For a given scenario determine a strategy for the QA and testing to be performed as part of 
Machine Learning (K3) 

3.1 INTRODUCTION TO MACHINE LEARNING 

Machine learning (ML) is a form of AI, where the AI-Based system learns its behaviour from provided 

training data, rather than being explicitly programmed.  The outcome of ML is known as a model, which 

is created by the AI development framework using a selected algorithm and the training data; this model 

reflects the learnt relationships between inputs and outputs.  Often the created model, once initially 

trained, does not change in use.  In contrast, in some situations, the created model can continue to learn 

from operational use (i.e. it is self-learning).  Example uses of ML include image classification, playing 
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games (e.g. Go), speech recognition, security systems (malware detection), aircraft collision avoidance 

systems and autonomous cars. 

There are three basic approaches to machine learning (ML).  With supervised ML the algorithm creates 

the model based on a training set of labelled data.  An example of supervised ML would be where the 

provided data were labelled pictures of cats and dogs and the created model is expected to correctly 

identify cats and dogs it sees in the future.  Supervised learning solves two forms of problem – 

classification problems and regression problems.  Classification is where the model classifies the inputs 

into different classes, such as ‘yes – this module is error prone’ and ‘no – this module is not error prone’.  

Regression is where the model provides a value, such as ‘the expected number of bugs in the module is 

12’. As ML is probabilistic, we can also measure the likelihood of these classifications and regressions 

being correct (see section 4.1 on performance metrics for ML).   

With unsupervised ML the data in the training set is not labelled and so the algorithm derives the 

patterns in the data itself.  An example of unsupervised ML would be where the provided data was 

about customers and the system was used to find specific groupings of customers, which may be 

marketed to in a specific manner.  Because the training data does not have to be labelled, it is easier 

(and cheaper) to source than the training data for unsupervised ML. 

With reinforcement learning a reward function is defined for the system, which returns a higher result 

when the system gets closer to the required behaviour.  Using feedback from the reward function, the 

system learns to improve its behaviour.  An example of reinforcement learning would be a route 

planning system that used a reward function to find the shortest route. 

3.2 THE MACHINE LEARNING WORKFLOW 

The activities in the machine learning workflow are shown in Figure 1.  
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Figure 1: Machine Learning Workflow 

The activities in the machine learning workflow are: 

3.2.1 Understand the Objectives 

The purpose of the ML model to be deployed needs to be understood and agreed with the stakeholders 

to ensure alignment with business priorities.  Acceptance criteria (including performance metrics – see 

section 4.1) should be defined for the developed model. 

3.2.2 Select a Framework 

A suitable AI development framework should be selected based on the objectives, acceptance criteria 

and business priorities.  These frameworks are introduced in section 1.9.  

3.2.3 Build and Compile the Model 

The model structure (e.g. number of layers) should be defined (it will typically be in source code, such as 

Python).  Next, the model is compiled, ready to be trained. 

3.2.4 Source the Data 

The data used by the model will be based on the objectives.  For instance, if the system is a real-time 

trading system, the data will come from the trading market.  If the system is analysing customers’ retail 

preferences for a marketing campaign, then the organization’s customer big data will be the source. 

The data used to train, tune and test the model should be representative of the operational data 

expected to be used by the model.  In some cases, it is possible to use pre-gathered data sets for the 
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initial training of the model (e.g. see Kaggle datasets at https://www.kaggle.com/datasets). However, 

raw data normally needs some pre-processing. 

3.2.5 Pre-Process the Data 

The features in the data that will be used by our model need to be selected – these are the attributes or 

properties in the data that we believe are most likely to affect the outcome of the prediction.  Training 

data may need to be managed to remove features that are not expected (or we don’t want) to have any 

effect on the resultant model – this is called feature selection or feature engineering.  By removing 

irrelevant information (noise), feature selection can reduce overall training times, prevent overfitting 

(see section 3.4.1), increase accuracy and make models more generalizable. 

Real world data is likely to include outlier values, be in a variety of formats, be missing coverage of 

important areas, etc.  Thus, pre-processing is normally required before it can be used to train (and test) 

the model.  Pre-processing includes conversion of data to numeric values, normalizing numeric data to a 

common scale, detection and removal of outliers and noisy data, reducing data duplication and the 

addition of missing data. 

3.2.6 Train the Model 

A ML algorithm (e.g. see machine learning techniques in section 1.7) uses the training data to create and 

train the model.  The algorithm should be selected based on the objectives, acceptance criteria and the 

available data. 

Note that the activities of training, evaluation and tuning are shown explicitly in Figure 1 as being 

iterative, however ML is a highly iterative workflow and it may be necessary to return to any of the 

earlier activities, such as sourcing and pre-processing the data as a result of later activities (e.g. 

evaluating the model). 

3.2.7 Evaluate the Model 

The trained model is evaluated against the agreed performance metrics using validation data – and the 

results are then used to improve (tune) the model.  Visualization of the results of the evaluation is 

normally required and different ML frameworks support different visualization options. 

In practice several models are typically created and trained, and the best one chosen based on the 

results of the evaluation and tuning. 

3.2.8 Tune the Model 

The results from evaluating the model against the agreed performance metrics are used to adjust its 

settings to fit the data and so improve performance.  The model may be tuned by hyperparameter 

tuning, where the training activity is modified (e.g. by changing the number of training steps or by 

changing the amount of data used for training), or attributes of the model are set (e.g. the number of 

neurons in a neural network or the depth of a decision tree). 

3.2.9 Test the Model 

Once a model has been trained, evaluated, tuned and selected it should be tested against the test data 

set to ensure that the agreed performance criteria are met.  This test data should be completely 

independent of the training and validation data used up until this point in the workflow. 

https://www.kaggle.com/datasets


37 

 

3.2.10 Deploy the Model 

The tuned model typically needs to be re-engineered for deployment along with its related resources, 

including the relevant data pipeline – this is normally achieved through the ML framework.  Targets 

include embedded systems and the cloud, where the model can be accessed via a web API.   

3.2.11 Use the Model 

Once deployed, the model, typically as part of a larger AI-Based system, can be used operationally.  

Models may perform scheduled batch predictions at set time intervals or may run on request in real-

time. 

3.2.12 Monitor & Tune the Model 

While the model is being used, there is a danger that its situation may evolve (see section 2.1.3 on 

Evolution) and that the model may ‘drift’ away from its intended performance.  To ensure that any drift 

is identified and managed, the operational model should be regularly evaluated against its acceptance 

criteria. 

It may be deemed necessary to update the model to address the problem of drift or it may be decided 

that re-training with new data will result in a more accurate or more robust model, in which case a new 

model may be created and trained with updated training data.  The new model may be compared 

against the existing model using a form of A/B Testing (see section 6.3). 

3.3 MACHINE LEARNING TRAINING AND TEST DATA 

When performed supervised ML, two separate data sets (a training data set and test set) are used to 

prevent overfitting (see section 3.4.1).  The test set is sometimes called the holdout set. 

To support the iterative evaluation and tuning of the model, the training data set is split into two – data 

used for training and validation data used for evaluation.  However, this can mean that there is now 

insufficient data for training.  One way to address this problem is known as cross-validation, where the 

training data set is split into n equal parts known as folds.  The model is then trained and evaluated n 

times – in each case a different fold is used as the validation set and the remaining folds are used as the 

training set.  In this way training is improved and evaluation and tuning can still be performed. 

3.4 OVERFITTING AND UNDERFITTING IN MACHINE LEARNING 

3.4.1 Overfitting 

Overfitting occurs when the model learns incorrect relationships from extraneous information, such as 

insignificant details, random fluctuations and noise in the training data (i.e. too many features have 

been included in the training data).  In effect it’s as if the model has memorized the training data and 

when it is used operationally it works excellently with data that is very similar to the training data but 

finds it difficult to generalize and handle new data.  One way to identify overfitting is to ensure an 

independent test set is used that is completely separate from the training data. 
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3.4.2 Underfitting 

Underfitting occurs when the model is unable to identify the relationships between inputs and outputs 

from the training data.  Underfitting usually occurs when there is insufficient training data to provide 

enough information to derive the correct relationships between inputs and outputs (i.e. not enough 

features included in the training data), but it can also occur when the selected algorithm does not fit the 

data (e.g. creating a linear model to work with non-linear data).  This typically leads to a simplistic model 

that makes many incorrect predictions. 

3.5 BIAS AND FAIRNESS IN THE TRAINING DATA 

Bias and fairness were introduced in section 2.1.5.  If the training data includes inherent biases, then the 

derived model will probably include those same biases.  Therefore, care must be taken to ensure data 

features that would lead to unfairness in the resultant model are not included.  For instance, among 

others, the following features should be recognized as potentially causing unwanted bias: 

• Gender 

• Sexual orientation 

• Age 

• Race 

• Religion 

• Country of origin 

• Educational background 

• Source of income 

• Home address 

However, simply removing the above features from the training data does not necessarily solve the 

problem as there could well be other features (perhaps used in combination) that could still lead to an 

unfair model (e.g. whether parents were divorced can lead to racial stereotyping in some locations). 

3.6 DATA QUALITY  

Supervised learning assumes that the training data is correct.  However, in practice, it is rare for training 

data sets to be labelled correctly 100% of the time.  Human labellers can make simple random mistakes 

(e.g. pressing the wrong button), systemic mistakes (e.g. all labellers were given the wrong instructions)  

and there is also the possibility that they make deliberate mistakes.  Labels are not always simple 

classifications into one of two classes and more complex labelling tasks may mean the correct label is 

questionable.  Labels in one language may be mis-translated into a second language.  Labelling may be 

performed a number of ways, with each approach having inherent risks to data quality: 

• Labelling by internal team 

• Outsourced labelling 

• Crowdsourced labelling 
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• Synthetic data generation 

• AI-Based labelling 

• Hybrid approaches 

Data may be of poor quality if, for example, the input sensors are low quality or badly calibrated – and 

this is more often a problem when sensor data comes from multiple sources (e.g. laboratories using 

slightly different measurement approaches or a variety of IoT devices). 

Missing data can take three main forms, and each has a different effect on the resultant model.  If the 

data is missed completely at random it should have little effect given the probabilistic nature of the 

model (other than to reduce accuracy due to lack of data).  If the data from a particular feature is missed 

(e.g. all data from females) then this is more likely to have an adverse effect on the resultant model 

(unless the model is not used to make predictions for females operationally).  Worse still, and most 

difficult to detect, is the third case, where a specific set of data values from a given feature are missing 

(e.g. data from females aged 35 to 50).  Such problems often occur in medical studies due to the nature 

of data collection.  In this case the model is likely to be severely compromised. 

3.7 MACHINE LEARNING ALGORITHM/MODEL SELECTION 

There is some controversy whether the selection of the algorithm, the model settings and 

hyperparameters is a science or an art [Henderson, Peter, et al. "Deep reinforcement learning that 

matters." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.].  There is no definitive 

approach that would allow the selection of the optimal set purely from an analysis of the problem 

situation – in practice this selection is nearly always partly by trial and error (as shown in the explicitly 

iterative part of the machine learning workflow in Figure 1). 

The information needed to make this selection includes knowing what functionality the model is 

expected to provide, what data is available to the learning algorithm and the model, and what non-

functional requirements must be met. 

In terms of functionality, the model is typically going to provide classification, prediction of a value 

(regression), detection of anomalies or determination of structure from data (clustering).  Knowing how 

much data is available may allow certain algorithms to be discarded (e.g. those that that rely on big data 

can be ignored if less data is available).  If the data is labelled then supervised learning is possible, 

otherwise another approach is needed.  The number of features that are expected to be used by the 

model will also point to the selection of certain algorithms, as will the number of expected classes for 

clustering.  Non-functional requirements may include constraints on available memory (e.g. an 

embedded system), the speed of prediction (e.g. for real-time systems) and, for some situations, the 

speed of training the model with updated training data.  Other non-functional areas of relevance may be 

the need for transparency (see section 2.1.7). 

3.8 MACHINE LEARNING TESTING AND QUALITY ASSURANCE 

Testing has been mentioned in several of the preceding sections on ML.  This section briefly identifies 

the quality assurance and testing opportunities directly related to ML. 
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3.8.1 Review of ML Workflow 

The ML workflow that is used should be documented and followed when performing ML.  Deviations 

from the workflow described in Figure 1 should be justified.   

3.8.2 Acceptance Criteria 

Acceptance criteria (including both functional and non-functional requirements) should be documented 

and justified for use on this application.  Performance metrics should be included for the model. 

3.8.3 Framework, Algorithm/Model and Parameter Selection 

The choice of framework, algorithm, model, settings and hyperparameters should be documented and 

justified.  

3.8.4 Model Updates 

Whenever the deployed model is updated it should be re-tested to ensure it continues to satisfy the 

acceptance criteria, including tests against implicit requirements that may not be documented, such as 

testing for model degradation (e.g. the new model runs slower than the previous model).  Where 

appropriate, A/B testing or back-to-back testing should be performed against the previous model.   

3.8.5 Training Data Quality  

ML systems are highly dependent on the training data being representative of the operational data and 

some ML systems have extensive operational environments (e.g. those used in autonomous vehicles).   

Boundary conditions (edge cases) are known to cause failures in all types of system (AI and non-AI) and 

should be included in the training data.  The selection of training data in terms of the size of the data set 

and characteristics such bias, transparency and completeness should be documented and justified and 

confirmed by experts for more critical systems. 

3.8.6 Test Data Quality 

The criteria for the training data apply equally to the test data, with the caveat that the test data must 

be as independent of the training data as possible.  The level of independence should be documented 

and justified.  Test data should be systematically selected and/or created and should also include 

negative tests (e.g. inputs outside the expected input range) and adversarial tests (see section 3.8.8 for 

details). 

3.8.7 Model Integration Testing 

Integration testing should be performed to ensure the ML model is correctly integrated with the 

remainder of the AI-Based system of which it is a part.  For instance, tests should be performed to check 

that the correct image file is passed to the model for object recognition and that it is in the format 

expected by the model.  Tests should also be performed to check that the output of the model is 

correctly interpreted and used by the rest of the system. 

3.8.8 Adversarial Examples and Testing 

An adversarial example is where an extremely small change made to the input to a neural network 

produces an unexpected (and wrong) large change in the output (i.e. a completely different result than 
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for the unchanged inputs).  Adversarial examples were first noticed with image classifiers.  By simply 

changing a few pixels (not visible to the human eye) it is possible to persuade the neural network to 

change its image classification to a very different object (and with a high degree of confidence).  Note, 

however, that adversarial examples are not limited to image classifiers, but are an attribute of neural 

networks in general, and so apply to any use made of neural networks. 

Adversarial examples are generally transferable.  This means that an adversarial example that causes 

one neural network to fail will often cause other neural networks to fail that are trained to perform the 

same task.  Note that these other neural networks may have been trained with different data and based 

on different architectures, but they are still prone to failure with the same adversarial examples.  

Adversarial testing is often referred to as performing adversarial attacks.  By performing these attacks 

and identifying vulnerabilities during testing, measures can be taken to protect against future failures 

and so the robustness of the neural network is improved. 

Attacks can be made when training the model and then on the trained model (neural network) itself.  

Attacks during training can include corrupting the training data (e.g. modifying labels), adding bad data 

to the training set (e.g. unwanted features) and corrupting the learning algorithm.  Attacks on the 

trained model can be white box or black box and involve identifying adversarial examples that will force 

the model to give bad results.   

With white box attacks, the attacker has full knowledge of the algorithm used to train the model and 

also the settings and parameters used.  The attacker uses this knowledge to generate adversarial 

examples by, for instance, making small perturbations in inputs and monitoring which ones cause large 

changes to the model. 

With black box attacks, the attacker has no access to the model’s internal workings or knowledge of how 

it was trained.  In this situation, the attacker initially uses the model to determine its functionality and 

then builds a ‘duplicate’ model that provides the same functionality.  The attacker then uses a white box 

approach to identify adversarial examples for this duplicate model.  As adversarial examples are 

generally transferable, the same adversarial examples will normally also work on the (black box) model. 
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4 MACHINE LEARNING PERFORMANCE METRICS AND BENCHMARKS 

Machine Learning Performance Metrics and Benchmarks – 90 minutes 

Keywords: Confusion Matrix, True Positive, False Positive, True Negative, False Negative, Accuracy, 
Precision, Recall, F1-Score, ML Benchmark Suite. 

Machine Learning Performance Metrics 

TAI-4.1 Give examples of the selection of different ML performance metrics to achieve different 
objectives (K2) 

TAI-4.2 Calculate the accuracy, precision, recall and F1-Score from a given set of ML performance 
data (K3) 

Benchmarks for Machine Learning 

TAI-4.3 Explain the use of benchmark suites for measuring ML performance (K2) 

4.1 MACHINE LEARNING PERFORMANCE METRICS 

Different performance metrics are used to evaluate different Machine Learning (ML) algorithms.  This 

document is limited to covering performance metrics for classification problems.  These metrics are 

initially agreed at the start of the ML workflow and then typically evaluated in two places in the ML 

workflow.  For evaluation, they are used by developers to tune their models (e.g. by the selection of 

parameters) until they achieve an acceptable level of performance with their evaluation data set.  The 

metrics are subsequently used to measure the acceptability of the performance of the final model with 

the (independent) test set. 

4.1.1 Confusion Matrix 

Imagine inputs are classified by the ML model as either true or false.  In an ideal world, all data would be 

correctly classified, however, in reality the data sets will occasionally overlap meaning that some data 

points, which should be classified as true will be wrongly classified as false (a false negative) and some 

data points, which should be classified as false will be wrongly classified as true (a false positive).  The 

remaining data points will be correctly classified as either a true negative or a true positive.  These four 

sets of data can be represented in a confusion matrix. 

4.1.2 Accuracy 

Accuracy measures the proportion of all classifications that were correct, thus:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
true positives + true negatives

true positives + true negatives + false positives + false negatives 
   

4.1.3 Precision 

Precision measures the proportion of predicted positives that were correct (how sure you are of your 

predicted positives), thus:  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
true positives

true positives + false positives 
   

4.1.4 Recall 

Recall (or Sensitivity) measures the proportion of actual positives that were predicted correctly (how 

sure you have not missed any positives), thus:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
true positives

true positives + false negatives 
   

4.1.5 F1-Score 

The F1-Score provides a balance (the harmonic average) between Recall and Precision, thus:  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
Precsion ∗ Recall

Precsion + Recall 
   

4.1.6 Selection of Performance Metrics 

Different performance metrics are appropriate depending on the situation.  Only the most basic and 

most common are covered here.  Other metrics include BLEU/ROUGE and mAP.  

Accuracy is suitable when the data sets are symmetric, for instance, when the counts of false negatives 

and false positives are similar. 

Precision is most useful when you want to be sure of your true positives (i.e. we want few or no false 

positives).  An example of this could be a military drone attacking terrorist targets.  In this scenario we 

want no innocent bystanders to be wrongly identified as terrorists.  This means we want no (or very 

few) false positives – and so Precision should be high. 

Recall is most useful when catching true positives is important (i.e. we need to sure of all or most 

negatives).  An example of this could be for an autonomous car sensing people in the road ahead.  If 

there is a pedestrian, we want to be sure to identify them and therefore we need no (or few) false 

negatives – so Recall needs to be very high 

F1 is most useful when the data distribution is uneven. 

These performance metrics will provide the average performance of a ML model, however, in most 

situations it is also important to assure the performance of the model in expected worst case scenarios. 

4.2 BENCHMARKS FOR MACHINE LEARNING 

Ideally experts would be used to evaluate each new ML system, but that’s normally too expensive.  

Instead, “representative” industry-standard benchmark suites are available, which include diverse 

workloads to cover a wide range of situations (e.g. image classification, object detection, translation and 

recommendation).   

These benchmark suites can be used to measure the performance of both hardware (using defined 

models) and software (e.g. to determine the fastest models).  Software benchmark suites can measure 

training (e.g. how fast a framework can train a ML model using a defined training data set to a specified 

target quality metric, such as 75% accuracy) and inference (e.g. how fast a trained ML model can 

perform inference). 
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Examples of ML sets of benchmarks are provided by MLPerf, which provides benchmarks for software 

frameworks, hardware accelerators and ML cloud platforms, and DAWNBench, which is a benchmark 

suite from Stanford University.  The OAEI (Ontology Alignment Evaluation Initiative) is a coordinated 

international initiative with the goals of: 

• assessing strengths and weaknesses of alignment/matching systems; 

• comparing performance of techniques; 

• increasing communication among algorithm developers; 

• improving evaluation techniques; 

• helping to improve the work on ontology alignment/matching. 

through the controlled experimental evaluation of the techniques’ performances.  
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5 INTRODUCTION TO THE TESTING OF AI SYSTEMS 

Introduction to the Testing of AI Systems – 45 minutes 

Keywords:  Probabilistic System, Self-Learning System, Test Oracle Problem. 

Challenges in Testing AI-Based Systems 

TAI-5.1 Explain how system specifications for AI-Based systems can create challenges with testing 
(K2) 

TAI-5.2 Recall those factors associated with test input data that can make testing AI-Based systems 
difficult (K1) 

TAI-5.3 Compare and contrast the difficulties associated with testing probabilistic & non-
deterministic AI-Based systems (K2) 

The Test Oracle Problem for AI-Based Systems 

TAI-5.4 Explain how AI-Based systems are affected by the test oracle problem (K2) 

5.1 CHALLENGES IN TESTING AI-BASED SYSTEMS 

AI-Based systems are typically made up of conventional components (e.g. a user interface) and AI 

components (e.g. a Machine Learning model).  Also, even ‘pure’ AI components are implemented in 

software and so can suffer the same defects as any other software.  Thus, when testing an AI-Based 

system, conventional software testing approaches are still required.  However, AI-Based systems include 

a number of special attributes that can make additional testing necessary than for conventional 

software systems: 

5.1.1 System Specifications 

Despite the amount of recent academic research conducted on AI (and ML in particular), there is little 

coverage of how best to specify the expected behaviour of AI-Based systems with their special 

characteristics (see section 2.1).   

In an ideal world, complete formal specifications would be available, so allowing the creation of 

automated test oracles.  In reality, the specifications for AI-Based systems are likely to be incomplete 

and informal, which requires testers to determine unspecified expected results.  This can be problematic 

if the testers are not fully cognizant of the required system behaviour and it is difficult to get this 

information from domain experts. 

Another problem is that AI-Based systems are often specified in terms of objectives rather than required 

functionality, which is a more conventional approach.  This is because the nature of many AI-Based 

systems is such that the functionality provided is opaque (e.g. it is very difficult to imagine how a deep 

neural network functions).   

Some AI-Based systems have extensive operational environments (e.g. an autonomous drone) and fully 

defining the operational environment can be more challenging than for a typical conventional system.  
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Note that the complexity of the operational environment normally means the test environments for 

these systems can be equally challenging (see section 8 for more details on test environments). 

The specifications for ML models should contain a set of required performance metrics (see section 4.1) 

to act as acceptance criteria for the ML models.  

5.1.2 Test Input Data 

AI-Based systems often depend on big data inputs and/or inputs from a large range of sources.  This can 

mean that input data is often unstructured and provided in diverse formats.  When developing AI-Based 

systems managing this data is a specialist task of a Data Scientist, but when it comes to the testing, this 

specialist data management task is one of several performed by the tester, often with little or no 

specialist training. 

When there are requirements for sets of test data that could contain personal information, as is often 

the case for AI-Based systems, testers are required to source sanitized test data to meet data privacy 

regulations, such as GDPR.  Care must be taken that the level of sanitization is sufficient to prevent the 

AI-Based system under test from inferring personal details that are only partially hidden. 

 

5.1.3 Probabilistic & Non-Deterministic Systems  

Due to the probabilistic nature of many AI-Based systems, there is not always an exact value that can be 

used as an expected result.  For instance, when an autonomous car plots a route around a stopped bus 

it does not need to calculate the optimal solution, but rather a solution that works (and is safe) - and so 

we accept sub-optimal, but good-enough solutions.   

The nature of how AI-Based systems determine their route can also mean that they do not come up with 

the same result each time (e.g. their calculation may be based on a random seed, which results in 

different, but workable, routes each time).  This makes such systems non-deterministic, which results in 

a lack of reproducibility and means that any regression tests need to have smarter expected results that 

take account in the variability due to the non-determinism. 

In both cases, the uncertainty in actual results requires testers to derive more sophisticated expected 

results, perhaps including tolerances, than for conventional systems.  Probabilistic AI-Based systems may 

also require the tester to run the same test multiple times to provide a statistically significant assurance 

that the system is working correctly (like a Monte Carlo experiment). 

5.1.4 Self-Learning Systems  

As AI technology becomes more advanced, more AI-Based systems will become available that can 

change their own behaviour over time.  These may be self-adapting systems (able to reconfigure and 

optimize themselves) or full self-learning systems that can adapt themselves by learning from their past 

experiences.  For both situations, it is likely that some tests that ran successfully on the original system 

will no longer be viable on the new, improved system.  Although it may be relatively easy to identify 

which tests are no longer valid, it is far more difficult to ensure that new tests for the new functionality 

have been generated. 
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5.1.5 Complexity  

Many AI-Based systems are extremely complex and difficult for humans to understand.  For instance, a 

‘simple’ car-driving neural network that was built over just 3 days was estimated to have about 27 

million connections and 250,000 parameters.  Another example of a complex ML system is one used to 

identify patterns in big data.  These systems are used because they can find patterns that humans, even 

after much study, simply cannot find.  If these AI-Based systems are so complex, then understanding 

them in sufficient depth to be able to generate expected results may be beyond many testers. 

5.1.6 AI-Specific Characteristics (see section 2.1) 

AI-Based systems have a number of special characteristics, some of which have already been covered in 

this section, but others are described in section 2.1, along with suggestions on how they may be tested.  

5.2 THE TEST ORACLE PROBLEM FOR AI-BASED SYSTEMS 

A recurring challenge when testing AI-Based systems is the test oracle problem.  Poor specifications, 

complex, probabilistic, self-learning and non-deterministic systems make the generation of expected 

results problematic. 

Testing approaches and techniques that address the test oracle problem are described in section 6 on 

black box testing. 
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6 BLACK BOX TESTING OF AI-BASED SYSTEMS 

Black Box Testing of AI-Based Systems – 120 minutes 

Keywords:  Combinatorial Testing, Pairwise Testing, Back-to-Back Testing, Differential Testing, A/B 

Testing, Metamorphic Testing, Metamorphic Relation. 

Combinatorial Testing 

TAI-6.1 Understand how pairwise testing is used for AI-Based systems (K2) 

Back-to-Back Testing 

TAI-6.2 Explain how back-to-back testing is used for AI-Based systems (K2) 

A/B Testing 

TAI-6.3 Explain how A/B testing is applied to the testing of AI-Based systems (K2) 

Metamorphic Testing 

TAI-6.4 Explain how metamorphic testing can be applied to the testing of AI-Based systems (K2) 

TAI-6.5 Apply metamorphic testing to derive test cases for a given scenario (K3) 

6.1 COMBINATORIAL TESTING 

To prove – by dynamic testing – that a specific test item meets all requirements under all given 

circumstances, then all possible combinations of input values in all possible states would need to be 

tested.  This impractical activity is referred to as ‘exhaustive testing’.  For that reason, in practice 

software testing derives test suites by sampling from the (extremely large) set of possible input values 

and states. Combinatorial testing is one systematic approach to deriving a useful subset of combinations 

from this input space. 

The combinations of interest are defined in terms of parameters (i.e. inputs and environment 

conditions) and the values these parameters can take. Where numerous parameters (each with 

numerous discrete values) can be combined, this technique enables a significant reduction in the 

number of test cases required, ideally without compromising the defect detection ability of the test 

suite. 

ISO/IEC/IEEE 29119-4 defines several combinatorial testing techniques, such as All Combinations, Each 

Choice Testing, Base Choice Testing and Pairwise Testing.  In practice pairwise testing is the most widely 

used, mainly due to ease of understanding, ample tool support and research showing that most defects 

are caused by interactions involving few parameters. 

The number of parameters of interest for an AI-Based system can be extremely high, especially when 

the system uses big data or interacts with the outside world, such as a self-driving car.  Thus, a means of 

systematically reducing the almost infinite number of possible combinations to a manageable subset by 

using a combinatorial testing technique, such as pairwise testing, is extremely useful.  In practice, even 
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the use of pairwise testing can still result in extensive test suites for such systems and the use of 

automation and virtual test environments (see section 8.1) often becomes necessary. 

Using self-driving cars as an example, at a high level the scenarios for system testing need to consider 

both different vehicle functions and the environments in which they are expected to operate.  Thus, the 

parameters would need to include the various self-driving functions (e.g. cruise control, adaptive cruise 

control, lane keeping assistance, lane change assistance, traffic light assistance, etc.) along with 

environment constraints (e.g. road types and surfaces, geographic area, time of day, weather 

conditions, traffic conditions, visibility, etc.).  In addition to these parameters, inputs from sensor should 

be considered at varying levels of effectiveness (e.g. the input from a video camera will degrade as a 

journey progress and it gets dirtier or the accuracy of a GPS unit will change as different numbers of 

satellites come into and go out of line of sight).  Research is currently unclear on the necessary level of 

rigour that would be required for the use of combinatorial testing with safety-critical AI-Based systems 

such as self-driving cars (e.g. pairwise may not be sufficient), but it is known that the approach is 

effective at finding defects and can also be used to estimate the residual level of risk. 

6.2 BACK-TO-BACK TESTING 

In back-to-back testing, an alternative version of the system (e.g. already existing, developed by a 

different team or implemented using a different programming language) is used as a pseudo-oracle to 

generate expected results for comparison from the same test inputs.  This is sometimes known as 

differential testing. 

As such, back-to-back testing is not a test case generation technique as test inputs are not generated.  

Only the expected results are generated automatically by the pseudo oracle (the functionally equivalent 

system).  When used in partnership with tools for generating test inputs (random or otherwise) it 

becomes a powerful way to perform high-volume automated testing. 

When back-to-back testing is used to support functional testing, the pseudo oracle does not have to 

meet the same non-functional constraints as the system under test.  For instance, the pseudo oracle 

could run far slower than is required for the system under test.  It is also not always necessary for the 

pseudo oracle to be a complete functionally equivalent system, as back-to-back testing can be 

performed with a pseudo oracle that is only equivalent to part of the system under test. 

In the context of ML, it is possible to use different frameworks, algorithms and settings to create pseudo 

oracles (in some situations it is even possible to create a pseudo oracle using conventional, non-AI, 

software).  A known problem with the use of pseudo oracles is that for them to work well they should be 

completely independent of the software under test.  With so much reusable, open source software 

being used to develop AI-Based systems, this independence can be easily compromised. 

6.3 A/B TESTING 

A/B testing is a statistical testing approach that allows testers to determine which of two systems 

performs better – it is sometimes known as split-run testing.  It is often used for digital marketing (e.g. 

finding the email that gets the best response) in client-facing situations.   

As an example, A/B testing is often used to optimize user interface design.  For instance, the user 

interface designer hypothesises that by changing the colour of the ‘buy’ button from the current red to 
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blue, that sales will increase.  A new variant of the interface is created with a blue button and the two 

interfaces are assigned to different users.  The sales rates for the two variants are compared and, given 

a statistically significant number of uses, it is possible to determine if the hypothesis was correct.  IF the 

blue button generated more sales, then the new interface with the blue button would replace the 

current interface with the red button.  This form of A/B testing requires a statistically significant number 

of uses and can be time-consuming, although tools (often using AI) can be used to support it.  

A/B testing is not a test case generation technique as test inputs are not generated.  A/B testing is a 

means of solving the test oracle problem by using the existing system as a partial oracle.  By comparing 

the new system with the current system, it is possible to determine if the new system is better in some 

way.  When used for digital marketing, the measure of success may by more sales, but for an AI-Based 

system, such as a ML classifier, the performance metrics, such as accuracy, sensitivity and recall, could 

be used (see section 4.1). 

A/B testing can be used whenever a component of an AI-Based system is updated, as long as acceptance 

criteria (e.g. ‘specified performance metrics must improve or stay the same’) are defined and agreed.  If 

A/B testing is automated, then it can be used for testing self-learning AI-Based systems, by comparing 

the new performance of the system with its previous performance and reverting to the previous version 

if the self-learning has not improved the system performance.  In this situation, care must be taken to 

ensure valid acceptance criteria are set. 

6.4 METAMORPHIC TESTING 

Metamorphic testing is an approach to generating test cases that deals, in part, with the test oracle 

problem often found with AI-Based systems, where generating expected results can be problematic (e.g. 

because of complexity, non-determinism and probabilistic systems).  The main difference between test 

cases generated using metamorphic testing and conventional test case design techniques is that the 

expected results in metamorphic testing may not be a fixed value, but, instead, are defined by a 

relationship with another expected result. 

Metamorphic testing uses metamorphic relations to generate follow-up test cases from a source test 

case that is known to be correct.  A metamorphic relation for the software under test describes how a 

change in the test inputs from the source test case to the follow-up test case affects a change (or not) in 

the expected outputs from the source test case to the follow-up test case. 

EXAMPLE 1 A test item measures the distance between a start and end point.  The source test case has test 
inputs A (start point) and B (end point) and an expected result C (distance) from running the test case.  The 
metamorphic relation states that if the start and end points are swapped, then the expected result remains 
unchanged.  Thus, a follow-up test case can be generated with B as the start point, A as the end point and C as 
the distance. 

EXAMPLE 2 A test item predicts the age of death for an individual based on a set of lifestyle parameters. A 
source test case has various test inputs, including 10 cigarettes smoked per day, and an expected result of age 
58 years from running the test case. The metamorphic relation states that if a person smokes more cigarettes, 
then their expected age of death will probably decrease (and not increase). Thus, a follow-up test case can be 
generated with the same input set of lifestyle parameters, except with the number of cigarettes smoked 
increased to 20 per day.  The expected result (the predicted age of death) for this follow-up test case can now 
be set to less than or equal to 58 years. 
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The expected result for the follow-up test case will not always be an exact value but will often be 

described as a function of the actual result achieved by executing the source test case (e.g. expected 

result for follow-up test case is greater than the actual result for source test case). 

A single metamorphic relation can often be used to derive multiple follow-up test cases (e.g. a 

metamorphic relation for a function that translates speech into text can be used to generate multiple 

follow-up test cases using the same speech input file at different input volume levels but with the same 

text as the expected result).  If metamorphic relations are stated formally (or semi-formally) and source 

test cases are provided, then it should be possible to automate the generation of follow-up test cases, 

although it is not possible to automate the generation of the metamorphic relations, which requires 

some domain knowledge. 

The process for performing metamorphic testing is: 

1. Construct metamorphic relations (MRs) 

– Identify properties of the program under test and represent them as metamorphic 

relations between test inputs and expected outputs, together with some method to 

generate a follow–up test case based on a source test case.  

2. Review MRs 

– Review and confirm MRs with customers and/or users. 

3. Generate source test cases 

– Generate a set of source test cases (using any testing technique or random testing).  

4. Generate follow-up test cases 

– Use the metamorphic relations to generate follow–up test cases. 

5. Execution of metamorphic test cases 

– Execute both the source and follow–up test cases, and check that the outputs do not 

violate the metamorphic relation.  Otherwise, the metamorphic test case has failed, 

indicating a bug. 

Metamorphic testing has been successfully used in a wide variety of AI-Based application areas, such as 

bioinformatics, web services, machine learning classifiers, search engines and security.  Research shows 

that only 3 to 6 diverse metamorphic relations can reveal over 90% of the faults that could be detected 

using a traditional test oracle. 
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7 WHITE BOX TESTING OF NEURAL NETWORKS 

White Box Testing of Neural Networks – 45 minutes 

Keywords: Artificial Neural Network, Deep Neural Net, Activation Value, Backward Propagation, 

Neuron Coverage, Threshold Coverage, Sign Change Coverage, Value Change Coverage, Sign-Sign 

Coverage. 

Structure of a Neural Network 

TAI-7.1 Explain the structure and working of a neural network (K2) 

Test Coverage Measures for Neural Networks 

TAI-7.2 Describe the different test coverage measures for neural networks (K2) 

TAI-7.3 Compare the test effectiveness of different test coverage measures for neural networks (K2) 

White Box Testing Tools for Neural Networks 

TAI-7.4 Identify tools supporting white box testing of neural networks (K1) 

7.1 STRUCTURE OF A NEURAL NETWORK 

A Neural Network is a computational model inspired by the neural network in a human brain.  It 

comprises a number of layers of connected nodes or neurons, as shown in Figure 2.  Note that in this 

section we will use as our example a feedforward neural network, which was the first and is the simplest 

type of artificial neural network – the only extra complexity we will add is that we will consider a 

network with multiple layers – known as a multi-layer perceptron (or deep neural net as it has hidden 

layers).  

 

Figure 2: Deep Neural Net 

The input nodes receive information from the outside world (e.g. each input may be a value for a pixel in 

an image), and the output nodes provide information to the outside world (e.g. a classification).  The 
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nodes in the hidden layers have no connections to the outside world and perform the computations that 

pass information from the input nodes to the output nodes. 

Each neuron accepts input values and generates output values, known as activation values (or output 

vectors), which can be positive, negative or zero (with a value of zero, a neuron has no influence on 

downstream neurons).  Each connection has a weight and each neuron has a bias.  The activation values 

are calculated by a formula based on the input activation values, the weights of the input connections 

and the bias of the neuron. 

For supervised learning, the network learns by use of backward propagation.  Initially all nodes are set to 

an initial value and the first input training data is passed into and through the network.  The output is 

compared with the known correct answer and the difference between the calculated output and the 

correct answer (the error) is fed back to the previous layer of the network and is used to modify the 

weights.  This backward error propagation goes back through the whole network and each of the 

connection weights is updated as appropriate.  As more training data is fed into the network it gradually 

learns from the errors until it is considered ready for evaluation with the validation data, which will 

determine the performance of the trained network. 

7.2 TEST COVERAGE MEASURES FOR NEURAL NETWORKS 

Traditional coverage measures are not really useful for neural networks as 100% statement coverage is 

typically achieved with a single test case.  The defects are normally hidden in the neural network itself.  

Thus, different coverage measures have been proposed based on the activation values of the neurons 

(or pairs of neurons) in the neural network when the neural network is tested. 

7.2.1 Neuron Coverage 

Neuron coverage for a set of tests is defined as the proportion of activated neurons divided by the total 

number of neurons in the neural network (normally expressed as a percentage). For neuron coverage, a 

neuron is considered to be activated if its activation value exceeds zero. 

7.2.2 Threshold Coverage 

Threshold coverage for a set of tests is defined as the proportion of neurons exceeding a threshold 

activation value divided by the total number of neurons in the neural network (normally expressed as a 

percentage).  For threshold coverage, a threshold activation value between 0 and 1 must be chosen as 

the threshold value.  Note that this threshold coverage corresponds to ‘neuron coverage’ in the 

DeepXplore tool. 

7.2.3 Sign Change Coverage 

Sign Change coverage for a set of tests is defined as the proportion of neurons activated with both 

positive and negative activation values divided by the total number of neurons in the neural network 

(normally expressed as a percentage). An activation value of zero is considered to be a negative 

activation value [Sun et al, Testing Deep Neural Nets paper]. 
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7.2.4 Value Change Coverage 

Value Change coverage for a set of tests is defined as the proportion of neurons activated where their 

activation values differ by more than a change amount divided by the total number of neurons in the 

neural network (normally expressed as a percentage).  For value change coverage, a value between 0 

and 1 should be chosen as the change amount. 

7.2.5 Sign-Sign Coverage 

Sign-Sign coverage for a set of tests is achieved if each neuron by changing sign (see 7.2.3) can be shown 

to individually cause one neuron in the next layer to change sign while all other neurons in the next layer 

stay the same (i.e. they do not change sign).  In concept, this level of neuron coverage is similar to 

modified condition/decision coverage (MC/DC) [Sun et al, Testing Deep Neural Nets paper]. 

7.2.6 Layer Coverage 

Coverage measures can also be defined based on whole layers of the neural network and how the 

activation values for the set of neurons in a whole layer change (e.g. absolutely or relative to each 

other).  Further research is needed in this area. 

7.2.7 Test Effectiveness of the White Box Measures 

There is currently little data on the test effectiveness of the different white box coverage measures for 

the white box testing of neural networks.  However, it is generally true that criteria requiring more tests 

will find more defects than those that require fewer tests, so allowing the relative effectiveness of the 

measures to be deduced.  Several subsumes relationships can be derived from the coverage measures 

described in sections 7.2.1. to 7.2.5.  All other measures subsume neuron coverage and sign-sign 

coverage also subsumes sign change coverage. 

Although easy to understand, achieving high levels of neuron coverage can normally be achieved using 

only a few test cases, so limiting its test effectiveness.  Early results for threshold coverage appear to 

show that this may be a useful measure for generating tests that cover defect-inducing corner cases, but 

the threshold value may need to be set individually for each neural network.  For value change 

coverage, higher values for the change amount will naturally require more test cases.  Sign-sign 

coverage is normally the most rigorous of the coverage criteria specified here. [Sun et al, Testing Deep 

Neural Nets paper]  

7.3 WHITE BOX TESTING TOOLS FOR NEURAL NETWORKS 

Commercial tools are not currently available to support the white box testing of neural networks, 

however there are several research tools, including: 

• DeepXplore – specifically for testing deep neural nets, proposes a white-box differential 

testing (back-to-back) algorithm to systematically generate adversarial examples that cover 

all neurons in the network (threshold coverage).  

• DeepTest – systematic testing tool for automatically detecting erroneous behaviours of cars 

driven by deep neural nets.  Supports the Sign-Sign coverage for DNNs.  

• DeepCover - provides all the levels of coverage defined in this section.  
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8 TEST ENVIRONMENTS FOR AI-BASED SYSTEMS 

Test Environments for AI-Based Systems – 45 minutes 

Keywords: Virtual Test Environment, Simulator, Fuzz Testing, Parameterized Test Scenario. 

Test Environments for AI-Based Systems 

TAI-8.1 Describe the main factors that differentiate the test environments for AI-Based systems 
from those required for conventional systems (K2) 

TAI-8.2 Understand the benefits provided by virtual test environments in the testing of AI-Based 
systems (K2) 

TAI-8.3 Recall reusable simulators used for the development and testing of AI-Based systems (K1) 

Test Scenario Derivation 

TAI-8.4 Recall the options available for deriving test scenarios (K1) 

Regulatory Test Scenarios and Test Environments 

TAI-8.5 Recall the options for regulating safety-related AI-Based systems (K1)  

8.1 TEST ENVIRONMENTS FOR AI-BASED SYSTEMS 

The test environments for AI-Based systems have much in common with those for conventional systems: 

typically, the development environment at unit level and a production-like test environment at system 

and acceptance levels.  Machine learning models, when tested in isolation, are typically tested within 

their development framework, as described in section 3.8. 

There are two main factors that differentiate the test environments for AI-Based systems from those 

required for conventional systems.  First, the context in which many AI-Based systems operate means 

their environment can be large, complex and constantly changing.  This can make testing in the real 

world extremely expensive if the full range of possible environments are to be tested, the test 

environments are expected to be realistic and the testing is to be performed within a sensible timescale.  

Second, those AI-Based systems that can physically interact with humans have a safety component, 

which can make testing in the real world dangerous.  Both factors indicate the need for the use of virtual 

test environments. 

Virtual test environments provide the following benefits, among others: 

• The use of a virtual environment ensures that dangerous scenarios can be tested in safety 

without causing damage to the system under test or any objects in its environment, such as 

vehicles, buildings, animals and humans.  Tests in virtual environments are typically also better 

for the real-world environment.  

• Virtual environments do not need to run in real-time – they can be run much faster with suitable 

processing power - meaning that many tests can be run in a short time period, potentially 

decreasing time-to-market by a large amount.  A single system can also be tested on many 

virtual test environments running in parallel, perhaps in the cloud. 
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• Virtual environments can be cheaper to set up and run than their real-world counterparts.  For 

instance, testing mobile phone communications across widely different urban environments is 

far cheaper when performed in a laboratory with virtual phones, transmitters and landscapes 

rather than with real phones being driven around a mix of locations, largely because only the 

relevant features need to be included in the virtual test environment.  However, it should be 

noted that some virtual test environments must be truly representative and closely match the 

real-world in some respects.  For instance, the testing of pedestrian avoidance in autonomous 

vehicles can require high levels of image representativeness. 

• Sometimes, creating unusual (edge-case) scenarios can be very difficult in the real world and 

virtual environments allow the creation of such scenarios (and the ability to run multiple 

variants of these unusual scenarios many times).  Virtual environments provide the tester with a 

greater level of control than they would have with real-word testing.  These tests can also 

incorporate a level of randomness, such as by including AI-Based humans in autonomous car 

testing. 

• By supporting the simulation of hardware, virtual environments allow systems to be tested with 

hardware components even when these components are not physically available (perhaps they 

have not been built yet) and they allow different hardware solutions to be trialled and 

compared inexpensively. 

• Virtual environments provide excellent observability, so that all aspects of the system under 

test’s response to a scenario can be measured and, where necessary, subsequently analysed. 

• Virtual environments can be used to test systems that cannot be tested in their real operational 

environment, such as a robot working on the site of a nuclear accident or a system to be used 

for space exploration. 

Virtual testing can be performed on simulators built specifically for a given system, but reusable 

simulators for specific domains are available both commercially and open source, for instance: 

• Morse, the Modular Robots Open Simulation Engine, a simulator for generic mobile robot 

simulation (single or multi robots), based on the Blender game engine;  

• AI Habitat, a simulation platform created by Facebook AI, designed to train embodied 

agents (such as virtual robots) in photo-realistic 3D environments; 

• DRIVE Constellation, an open and scalable platform for self-driving cars from NVIDIA based 

on a cloud-based platform, capable of generating billions of miles of autonomous vehicle 

testing. 

8.2 TEST SCENARIO DERIVATION 

For the systematic testing of an AI-Based system, test scenarios need to be generated to test individual 

AI components, the interaction of these components with the rest of the system, the complete system 

of interacting components, and the system interacting with its environment. 

Test scenarios can be derived from several sources: 

• System requirements 

https://aihabitat.org/
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• User issues 

• Automatically reported issues (e.g. for autonomous systems) 

• Accident reports (e.g. for physical systems) 

• Insurance data (e.g. for insured systems, such autonomous cars) 

• Regulatory body data (e.g. collected through legislation) 

• Testing at various levels (e.g. test failures or anomalies on the test track or on real roads 

could generate interesting test scenarios for an autonomous car at other test levels, while a 

sample of test scenarios run on the virtual test environment should also be run on real 

roads to validate representativeness of the virtual test environment) 

An option using combinatorial testing for the generation of test scenarios for the system testing of 

autonomous cars is described in section 6.1.  Metamorphic testing (see section 6.4) and fuzz testing 

could also be used to generate test scenarios. 

8.3 REGULATORY TEST SCENARIOS AND TEST ENVIRONMENTS 

In the case of safety-related AI-Based systems, some level of regulation should apply to the systems.  

Two options are generally available to government for this regulation; it can allow the development 

organization to self-regulate or a regulatory body is set up to provide independent assurance that the 

systems meet minimum standards (a certification approach).   

If a certification approach is followed, then the testing approach will need to be shared between the 

regulatory body and those providing the systems for certification (as it is for the crash testing of cars).  A 

core part of the approach will be shared test environment definitions and shared test scenarios that can 

be run using test automation on those environments.  The core set of shared test scenarios will need to 

be parameterized to allow new scenarios to be generated by varying the parameter values for each test 

to prevent overfitting and the regulatory body will also keep a set of private test scenarios that are not 

shared.  The parameterization and the private scenarios should ensure that systems are not built just to 

pass known tests, and this approach also allows the regulatory body to add new scenarios as they 

become aware of potential problem situations from actual use of the systems. 
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9 USING AI FOR TESTING 

Using AI for Testing - 30 minutes 

Keywords: Probabilistic Software Engineering, Search Based Software Engineering, Exploratory 
Testing, Automated Exploratory Testing. 

Introduction to AI-Driven Testing 

Forms of AI used for Testing 

TAI-9.1 Recall the three main forms of AI that prove useful to software testing (K1) 

Test Types Supported by AI 

TAI-9.2 List the test types supported by AI (K1) 

Example Use Cases of AI for Testing 

TAI-9.3 Describe examples of how AI is used to support testing (K2) 

9.1 INTRODUCTION TO AI-DRIVEN TESTING 

For many years software testers have been trying to increase the amount of automation in software 

testing, but, despite ongoing efforts, the rate of increase has been far slower than expected.  A major 

problem has been that the changes that need to be made to the automation scripts when the software 

under test is changed are still largely performed manually, as is the initial script writing.  However, with 

recent advances in AI technology, it should be possible to automate more of the manual testing tasks.   

The main focus of this document is the testing of AI-Based systems.  AI can also be used as part of the 

tools that perform software testing (of any form of software, including AI-Based systems).  This section 

briefly introduces the concept and shows how AI can be used to support software testing through some 

example use cases.  

9.2 FORMS OF AI USED FOR TESTING 

According to Prof Mark Harman (of UCL and Facebook), there are three main forms of AI that prove 

useful to software engineering (and testing).  These are: 

• Probabilistic Software Engineering – AI can handle real world problems which are, by their 

nature, fuzzy and probabilistic. For instance, AI can be used to analyse and predict user 

behaviours, because of the stochastic nature of human behaviour. 

• Classification, Learning and Prediction – AI can be used for predicting costs as part of 

project planning.  For instance, machine learning techniques can be used for defect 

prediction. 

• Search Based Software Engineering (SBSE) - AI is used to solve optimisation problems using 

computational search of large and complex search spaces.  Search Based Software Testing 

may be the most successful and widely applicable areas of SBSE, and examples include 
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identifying the smallest set of test cases that achieve a given coverage criterion and 

prioritising regression test cases. 

9.3 TEST TYPES SUPPORTED BY AI 

There are few areas of software testing that cannot be supported by the use of AI.  Here are some 

example uses of AI for testing: 

• Specification Review – AI interprets specifications written in natural language and identifies 

potential anomalies and defects.  Similarly, AI-Based model checkers can be used to find 

problems in formal and semi-formal models. 

• Specification-Based Script Generation – AI interprets natural language specifications and AI 

can subsequently generate a test script to provide coverage of the generated model. 

• Test Strategy Assistant – AI learns about risk by analysis of big data collected from multiple 

projects. 

• Usage Profiling - AI predicts future use of systems through the analysis of big data collected 

from system use. 

• Exploratory Testing – AI learns and applies heuristics from observation of human 

exploratory testing sessions. 

• Crowd Testing – AI analyses responses from multiple crowd testers to identify the most 

useful feedback and remove duplicate feedback. 

• Defect Management – AI classifies and prioritises defects objectively. 

• User Interface Verification – AI compares web pages and identify perceptible differences, 

ignoring invisible rendering, size and position differences. 

• Web App Spidering (differential testing) – AI identifies issues by repeatedly crawling around 

the web app collecting data, such as screenshots and load times and comparing the current 

data with historical data to identify potential issues. 

• Element Location – AI finds web elements, such as buttons and text boxes removing the 

need to hard code them into test scripts (e.g. as applied in Appium). 

9.4 EXAMPLE USE CASES OF AI FOR TESTING 

9.4.1 Bug Prediction 

A bug prediction tool provides guidance on which parts of a system are most likely to contain defects 

(e.g. a form of classification into ‘worth testing’ or ‘not worth testing’) in order to help test prioritization.  

Several factors could influence the result, such as: 

• Source code metrics 

o Lines of code 

o Number of comments 

o Cyclomatic complexity 
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o Module dependencies 

• Process metrics 

o Revisions made to module 

o Times refactored 

o Times fixed / when fixed 

o Lines of code changed (code churn) 

o Module age 

• People and organizational metrics 

o Number of authors 

o Developer experience 

Note that because there are so many potential factors (all the above plus more), determining the 

relationship between the factors and propensity to bugs is beyond human capabilities.  Also, no two 

situations are the same, so the creation of a Machine Learning (ML) model for bug prediction that can 

be reused in all projects and all organizations is infeasible.  Instead, ML for bug prediction needs to be 

performed using the available data within the local project or organization to create a model that is 

optimized for that use. 

Bug prediction using ML has been successfully used in several different situations (e.g. Tosun, 2010 and 

Kim, 2007).  The best predictors have been found to be people and organizational measures rather than 

the more widely used source code metrics. 

9.4.2 Static Analysis 

Static analyzers are automated tools that detect anomalies in source code by scanning programs 

without running them.  Although not bug predictors they provide similar guidance – typically identifying 

where they believe there may be problems in the code.  Facebook’s Infer tool uses a form of Abstract 

Interpretation to analyse C, Objective-C and Java on both Android and iOS.  It works fast compared to 

conventional static analysers and can analyse millions of lines of code in a few minutes, which makes it 

ideal for use with continuous integration.  Facebook claim that approximately 80% of flagged anomalies 

are fixed, so the false alarm rate is relatively low.  It is successfully used in a number of different 

organizations including Facebook, Instagram, Uber and Spotify, and is open source. 

9.4.3 Regression Test Optimization 

Regression testing is performed to ensure that changes to a system cause no unwanted side-effects to 

unchanged parts of the system – it is an exercise in re-executing previously run tests and checking that 

the results have not changed.  As such, it is a largely repetitive task that should be automated wherever 

technically and economically feasible.  As changes are made to a system, new tests are created and run, 

and the successful tests become candidates for adding to the regression test suite.  In this manner, 

regression test suites tend to grow over time, sometimes leading to situations where they take a lot of 

effort to run (so costing a lot – up to 80% of the testing budget) and a lot of time to run (so delaying the 

release of updated software).   

To prevent regression test suites growing too large, they should be frequently ‘pruned’ to leave only the 

most effective and efficient tests with no duplication.  This is known as regression test optimization and 

should result in a regression test suite with high fault detection capability and a low cost of execution.  
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However, a lack of knowledge on the part of testers and poor system documentation can make this 

pruning activity expensive and time-consuming to perform as a manual activity. 

For an AI-Based tool to perform regression test optimization, it needs to gather information on test 

cases, such as the following: 

• tests that found defects previously 

• tests that exercise recently changed code 

• tests that address high risk areas 

• test coverage achieved by a test 

• execution time used by a test 

• requirements covered by a test 

Using this, and other available information, the tool can then create an optimized regression test suite 

that, ideally, still finds most regression faults but takes less time to run.  Such AI-Based regression test 

optimization tools use techniques to select, prioritize and even augment test cases to create a more 

effective and efficient regression test suite.  Results from research show that reductions of 50% in the 

size of a regression test suite can be achieved while still detecting most defects, and reductions of 94% 

can be achieved while still achieving full requirements coverage. 

9.4.4 Test Input Generation 

A tool that automatically generated a set of test inputs to achieve a test completion goal would be 

useful to many test designers.  Typical completion goals for such tools tend to be structural coverage 

criteria, such as statements and branch coverage, mainly because these criteria are required by 

regulatory standards, mainly for safety-related software.   

The technology used for such tools includes the use of symbolic execution and search-based AI.  Several 

tools are available in this area, such as the open source tools AUSTIN for C and EVOSUITE for Java, and 

Intellitest for C#, which is part of Visual Studio. 

Empirical studies show that test input generation tools are good at increasing coverage at little or no 

extra cost, but there appears to be no measurable improvement in fault detection by using them. 

Outside of achieving coverage criteria required by regulatory standards, these tools have great potential 

for the automated creation of regression test suites.  Often regression testing must be done, but no 

regression test suite is available.  A ‘complete’ set of test inputs can be automatically generated for the 

original program using a test input generation AI-Based tool.  Those test inputs can then be run through 

the original program to create a corresponding set of actual results.  Together these inputs and actual 

results can be combined to form the basis of the regression test suite. 

9.4.5 Automated Exploratory Testing 

The testing of mobile apps is largely manual, although, if developing an Android app, Android Monkey is 

available to randomly generate test inputs using fuzz testing to execute tests looking for results such as 

an ‘application not responding’ (ANR) or a simple system crash.  As these tests take little, or no, 

preparation most app developers run these random tests to identify serious problems with their apps.  

However, a problem with Android Monkey is that the sequences of inputs required to cause a problem 
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can be very large, meaning that many developers discount such problems as being either too difficult to 

debug or unlikely to correspond to real world use.  

AI-Based tools can improve upon the random approach by automatically generating sequences of test 

inputs based on the user interface, code coverage and heuristics.  Available tools for performing 

automated exploratory testing of Android apps include Dynodroid and Sapienz.  Dynodroid employs 

heuristics to reduce the number of inputs and events necessary to reach comparable code coverage as 

that of Android Monkey.  Sapienz uses a multi-objective approach of maximising code coverage and 

increasing fault revelation, while minimising the length of fault-revealing test sequences.  Results show 

that the AI-Based tools can achieve equivalent levels of coverage and find more defects while reducing 

the average sequence of steps from an average of around 15,000 for Android Monkey to around 100. 

 


